Bovine Reproduction. Группа авторов

Bovine Reproduction - Группа авторов


Скачать книгу
Belville, C., Van Vlijmen, H., Ehrenfels, C. et al. (2004). Mutations of the anti‐Müllerian hormone gene in patients with persistent Müllerian duct syndrome: biosynthesis, secretion, and processing of the abnormal proteins and analysis using a three‐dimensional model. Mol. Endocrinol. 18: 708–721.

      122 122 Kitahara, G., El‐Sheikh Ali, H., Sato, T. et al. (2012). Anti‐Müllerian hormone (AMH) profiles as a novel biomarker to evaluate the existence of a functional cryptorchid testis in Japanese Black calves. J. Reprod. Dev. 58: 310–315.

      123 123 Ying, S. (1987). Inhibins and activins: chemical properties and biological activity. Proc. Soc. Exp. Biol. Med. 186: 253–264.

      124 124 Robertson, D., Burger, H., and Fuller, P. (2004). Inhibin/activin and ovarian cancer. Endocr. Relat. Cancer 11: 35–49.

      125 125 Suresh, P., Rajan, T., and Tsutsumi, R. (2011). New targets for old hormones: inhibin’s clinical role revisited. Endocr. J. 58: 223–235.

      126 126 Phillips, D. (2005). Activins, inhibins and follistatins in the large domestic species. Domest. Anim. Endocrinol. 28: 1–16.

      127 127 Kaneko, H., Noguchi, J., Kikuchi, K., and Hasegawa, Y. (2003). Molecular weight forms of inhibin A and inhibin B in the bovine testis change with age. Biol. Reprod. 68: 1918–1925.

      128 128 Kaneko, H., Matsuzaki, M., Noguchi, J. et al. (2006). Changes in circulating and testicular levels of inhibin A and B during postnatal development in bulls. J. Reprod. Dev. 52: 741–749.

      129 129 Fortes, M., Reverter, A., Hawken, R. et al. (2012). Candidate genes associated with testicular development, sperm quality, and hormone levels of inhibin, luteinizing hormone, and insulin‐like growth factor 1 in Brahman bulls. Biol. Reprod. 87: 58.

      130 130 Ginther, O., Beg, M., Bergfelt, D., and Kot, K. (2002). Activin A, estradiol, and free insulin‐like growth factor I in follicular fluid preceding the experimental assumption of follicle dominance in cattle. Biol. Reprod. 67: 14–19.

      131 131 Beg, M. and Ginther, O. (2006). Follicle selection in cattle and horses: role of intrafollicular factors. Reproduction 132: 365–377.

      132 132 Xiong, X., Wang, A., Liub, G. et al. (2006). Effects of p,p'‐dichlorodiphenyl dichloroethylene on the expressions of transferrin and androgen‐binding protein in rat Sertoli cells. Environ. Res. 101: 334–339.

      133 133 Griswold, M. (1993). Protein secretion by Sertoli cells: general considerations. In: The Sertoli Cell (eds. L.D. Russell and M.D. Griswold), 195–200. Clearwater, FL: Cache River Press.

      134 134 Kelce, W., Stone, C., Laws, S. et al. (1995). Persistent DDT metabolite p,p'‐DDE is a potent androgen receptor antagonist. Nature 375: 581–585.

      135 135 Griswold, M. (1988). Protein secretions of Sertoli cells. Int. Rev. Cytol. 110: 133–156.

      136 136 Tapanainen, J., Aittomaki, K., and Huhtaniemi, L. (1997). New insights into the role of follicle‐stimulating hormone in reproduction. Ann. Med. 29: 265–266.

      137 137 Fritz, I., Rommerts, F., Louis, B., and Dorrington, J. (1976). Regulation by FSH and dibutyryl cyclic AMP of the formation of androgen binding protein in Sertoli cell‐enriched cultures. J. Reprod. Fertil. 46: 17–24.

      138 138 Suire, S., Fontaine, I., and Guillou, F. (1995). Follicle stimulating hormone (FSH) stimulates transferrin gene transcription in rat Sertoli cells: cis and trans‐acting elements involved in FSH action via cyclic 3′,5′‐monophosphate on the transferrin gene. Mol. Endocrinol. 9: 756–766.

      139 139 Schteingart, H., Meroni, S., Pellizzari, E. et al. (1995). Regulation of Sertoli cell aromatase activity by cell density and prolonged stimulation with FSH, EGF, insulin and IGF‐1 at different moments of pubertal development. J. Steroid Biochem. Mol. Biol. 52: 375–381.

      140 140 Skinner, M. and Griswold, M. (1982). Secretion of testicular transferrin by cultured Sertoli cells is regulated by hormones and retinoids. Biol. Reprod. 27: 211–221.

      141 141 Lin, L., Doherty, D., Lile, J. et al. (1993). GDNF: a glial cell line‐derived neurotrophic factor for midbrain dopaminergic neurons. Science 260: 1130–1132.

      142 142 Liu, T., Yu, B., Luo, F. et al. (2012). Gene expression profiling of rat testis development during the early post‐natal stages. Reprod. Domest. Anim. 47: 724–731.

      143 143 Johnston, D., Olivas, E., DiCandeloro, P., and Wright, W. (2011). Stage‐specific changes in GDNF expression by rat Sertoli cells: a possible regulator of the replication and differentiation of stem spermatogonia. Biol. Reprod. 85: 763–769.

      144 144 Aponte, P., Soda, T., van de Kant, H., and de Rooij, D. (2006). Basic features of bovine spermatogonial culture and effects of glial cell line derived neurotrophic factor. Theriogenology 65: 1828–1847.

      145 145 Harikae, K., Tsunekawa, N., Hiramatsu, R. et al. (2012). Evidence for almost complete sex‐reversal in bovine freemartin gonads: formation of seminiferous tubule‐like structures and transdifferentiation into typical testicular cell types. J. Reprod. Dev. 58: 654–660.

      146 146 Russell, L. and Griswold, M. (eds.) (1993). The Sertoli Cell. Clearwater, FL: Cache River Press.

      147 147 Kramer, M., de Lange, A., and Visser, M. (1964). Spermatogonia in the bull. Z. Zellforsch. 63: 735–758.

      148 148 Krallinger, H. (1931). Cytologische studien an einigen haussäugetieren. Arch. Tierernahr. Tierz. 5: 127–187.

      149 149 Parks, J., Lee, D., Huang, S., and Kaproth, M. (2003). Prospects for spermatogenesis in vitro. Theriogenology 59: 73–86.

      150 150 Senger, P. (2005). Endocrinology of the male and spermatogenesis. In: Pathways to Pregnancy and Parturition, 2nd revised edn., 214–239. Redmond, OR: Current Conceptions Inc.

      151 151 Mullins, K. and Saacke, R. (2003). Illustrated Anatomy of the Bovine Male and Female Reproductive Tract. Ephrata, PA: Germinal Dimensions Inc., Cadmus Professional Communications, Science Press Division.

      152 152 Amann, R. (1962). Reproductive capacity of dairy bulls. IV. Spermatogenesis and testicular germ cell degeneration. Am. J. Anat. 110: 69–78.

      153 153 Berndtson, W. and Desjardins, C. (1974). The cycle of the seminiferous epithelium and spermatogenesis in the bovine testis. Am. J. Anat. 140: 167–180.

      154 154 Johnson L, Wilker C, Cerelli J. Spermatogenesis in the bull. Proceedings of the Fifteenth Technical Conference on AI and Reproduction. Columbia, MO: National Association of Animal Breeders, 1994, pp. 9–27.

      155 155 Johnson, L., Varner, D., Roberts, M. et al. (2000). Efficiency of spermatogenesis: a comparative approach. Anim. Reprod. Sci. 60–61: 471–480.

       Muhammad Salman Waqas

       Department of Theriogenology, University of Agriculture, Faisalabad, Pakistan

      Spermatogenesis is a highly proliferative and regulated developmental process of multiple germ cell divisions to increase their number and subsequently differentiate to spermatozoa in the seminiferous tubules (ST) of testes. Spermatogenesis is essential for species conservation and genetic diversity within the species [1]. For cattle farming, spermatogenesis yields target spermatozoa for genetic improvement in production potential. Traditionally, the bull has been truly called half of the herd on account of his spermatogenesis. A bull produces more calves per year per herd than a cow. The bull contributes to the genetic and production potential of the herd more extensively and perpetually than does the cow. If the replacement heifers are maintained, the bull affects the production potential of the herd for about 25 years [2]. Spread of male germplasm through artificial insemination is the major tool for genetic improvement in cattle production. In the United States, adaptation of artificial insemination led to a 4.5‐fold increase in milk production per dairy cow on average from 1940 to 2009 [3].


Скачать книгу