Природа и свойства физического времени. Леонид Михайлович Мерцалов
обе стороны соотношения на
И, учитывая, что
где ε – энергия частицы.
Откуда легко увидеть, что и в этом случае мы получаем то же выражение:
Из рассмотренных случаев видно, что, как мы и предполагали, из любой задачи динамики всегда получается одно и то же выражение для текущего временного интервала. Связано это с тем, что время как физическая величина имеет единообразный внутренний физический смысл для всей классической механики и, предположительно, и для всей физики вообще, несмотря на то, что первоначально оно было введено как не имеющая дополнительных свойств абстрактная длительность.
Прежде чем приступить к анализу найденной закономерности, необходимо сделать некоторые замечания о степени ее значимости и границах ее применимости.
В качестве исходной точки для последующих преобразований был взят второй закон Ньютона в каноническом виде. Поскольку этот закон выражает наиболее фундаментальные свойства материального мира, заключающиеся, во-первых, в существовании массы как меры инертности тела и, во-вторых, в способности этого тела изменять свою скорость под действием приложенной силы, то полученное выражение для величины интервала физического времени также является фундаментальным законом, связывающим меру противодействия со стороны материального тела изменению его энергии с количеством внешней энергии, вложенной в процесс движения, а следствия, из него вытекающие, имеют столь же фундаментальное значение.
Кроме того, выражение для временного интервала было получено из второго закона без каких-либо специальных ограничений или искусственных приемов, выходящих за рамки классической механики. Поэтому полученное выражение может быть применено в той же мере и тех же случаях, что и упомянутый выше закон. То есть выражение для временного интервала, полученное подобным образом, без каких-либо ограничений применимо в границах применимости классической механики.
И отсюда следует главный вывод: если считать, что второй закон Ньютона адекватно описывает реальные движения, то полученное выражение описывает их столь же адекватно.
При этом учитывается, как уже ранее отмечалось, некоторая ограниченность описания, присущая абстрактному изображению реального движения.
Отмечая это, приходим к окончательному выводу, что выражение вида
где Т – временной интервал;
Ĵ – обобщенный момент инерции;
E – вкладываемая в процесс или извлекаемая из процесса сторонняя энергия, имеет для классической механики всеобщий характер и исчерпывающим образом характеризует физическое время, фигурирующее в ее задачах.
Перейдем теперь к анализу свойств выведенной закономерности.
Заметим, прежде всего, что величина временного интервала, выраженная таким образом, может быть