Природа и свойства физического времени. Леонид Михайлович Мерцалов
вида закономерности, является утверждение о том, что время не является самостоятельной материальной сущностью. В отличие от абсолютного времени Ньютона квазиматериальность не является необходимым свойством временного интервала ни теоретически, ни при практическом его использовании в реальных динамических задачах. Квадрат значения временного интервала в построениях классической механики есть счетная величина, как и считал в свое время Аристотель. Она в итоге есть отношение сопротивления протеканию процесса к половине энергии, вкладываемой в процесс или извлекаемой из него. Поэтому время по своей сути есть отношение. Однако, будучи отношением, оно, тем не менее не имеет материального воплощения, как, например, масса. У времени в нашей интерпретации нет такой двойственности: время, используемое в физических зависимостях, есть число, и у него нет присущих Ньютоновому времени противоречивых свойств.
Физически время есть измеренная продолжительность единичного процесса и вне процесса не существует.
Являясь абстрактной характеристикой реального материального взаимодействия, его параметром, свойством, присущим движению материи, т. е. свойством свойства или свойством в квадрате, само время, поэтому особым видом материи, как, например, электромагнитное поле, не является, и непосредственно с ним невозможно производить материальные преобразования. Подобные действия можно предпринять лишь по отношению к самому движению, воздействуя на условия его осуществления. И лишь в результате этого параметры движения, в том числе и время, изменятся в свою очередь. Поэтому время само по себе, независимо от движения, к которому оно относится, нельзя как нечто самостоятельно существующее «отразить», «сжать», «повернуть», извлечь из него энергию, как нельзя извлечь, например, энергию из числового значения скорости или ускорения, поскольку «движет» процесс не время, а вложенная в процесс сторонняя энергия.
Подобное заключение, объявляющее ложной субстанциональную концепцию, которой придерживался Козырев, требует дополнительного пояснения. Для того чтобы сделать такое заявление, нам пришлось использовать полученное ранее общеизвестное математическое выражение, связывающее между собой некоторые физические величины (второй закон Ньютона), и в результате анализа этого выражения определить свойства временного интервала. Подобный способ объяснения физических явлений широко применяется в современной науке и не является чем-то необычным или недостаточно строгим. Собственно, вся математическая физика построена на этом приеме. Вопрос здесь заключается лишь в том, какое математическое выражение при этом берется за основу, насколько оно соответствует и как точно описывает истинные закономерности реального мира?
Но мы уже указывали, что выражение для временного интервала, выведенное из второго закона Ньютона, является столь же фундаментальным, как и этот закон. А поскольку второй закон Ньютона появился в результате обобщения