Живи долго! Научный подход к долгой молодости и здоровью. Майкл Грегер

Живи долго! Научный подход к долгой молодости и здоровью - Майкл Грегер


Скачать книгу
National Library of Medicine. Search results for fisetin. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/results?cond=&term=fisetin&cntry=&state=&city=&dist=. Accessed May 29, 2021.; https://clinicaltrials.gov/ct2/results?cond=&term=fisetin&cntry=&state=&city=&dist=

555

Grynkiewicz G, Demchuk OM. New perspectives for fisetin. Front Chem. 2019;7:697. https://pubmed.ncbi.nlm.nih.gov/31750288/

556

Rabin BM, Joseph JA, Shukitt-Hale B. Effects of age and diet on the heavy particle-induced disruption of operant responding produced by a ground-based model for exposure to cosmic rays. Brain Res. 2005;1036(1–2):122–9. https://pubmed.ncbi.nlm.nih.gov/15725409/

557

Miller MG, Thangthaeng N, Rutledge GA, Scott TM, Shukitt-Hale B. Dietary strawberry improves cognition in a randomised, double-blind, placebo-controlled trial in older adults. Br J Nutr. Published online January 20, 2021:1–11.; https://pubmed.ncbi.nlm.nih.gov/33468271/

558

Gao Q, Qin LQ, Arafa A, Eshak ES, Dong JY. Effects of strawberry intervention on cardiovascular risk factors: a meta-analysis of randomised controlled trials. Br J Nutr. 2020;124(3):241–6. https://pubmed.ncbi.nlm.nih.gov/32238201/

559

Schell J, Scofield RH, Barrett JR, et al. Strawberries improve pain and inflammation in obese adults with radiographic evidence of knee osteoarthritis. Nutrients. 2017;9(9):949. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5622709/

560

Ezzat-Zadeh Z, Henning SM, Yang J, et al. California strawberry consumption increased the abundance of gut microorganisms related to lean body weight, health and longevity in healthy subjects. Nutr Res. 2021;85:60–70. https://pubmed.ncbi.nlm.nih.gov/33450667/

561

Morotomi M, Nagai F, Watanabe Y. Description of Christensenella minuta gen. nov., sp. nov., isolated from human faeces, which forms a distinct branch in the order Clostridiales, and proposal of Christensenellaceae fam. nov. Int J Syst Evol. 2012;62(1):144–9. https://pubmed.ncbi.nlm.nih.gov/21357455/

562

Waters JL, Ley RE. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biol. 2019;17(1):83. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6819567/

563

Wang Y, Chang J, Liu X, et al. Discovery of piperlongumine as a potential novel lead for the development of senolytic agents. Aging (Albany NY). 2016;8(11):2915–26. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5191878/

564

Yadav V, Krishnan A, Vohora D. A systematic review on Piper longum L.: bridging traditional knowledge and pharmacological evidence for future translational research. J Ethnopharmacol. 2020;247:112255. https://pubmed.ncbi.nlm.nih.gov/31568819/

565

Kumar S, Kamboj J, Suman, Sharma S. Overview for various aspects of the health benefits of Piper Longum Linn. fruit. J Acupunct Meridian Stud. 2011;4(2):134–40. https://pubmed.ncbi.nlm.nih.gov/21704957/

566

López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217. https://pubmed.ncbi.nlm.nih.gov/23746838/

567

van Deursen JM. Senolytic therapies for healthy longevity. Science. 2019;364(6441):636–7. https://pubmed.ncbi.nlm.nih.gov/31097655/

568

López-León M, Goya RG. The emerging view of aging as a reversible epigenetic process. Gerontology. 2017;63(5):426–31. https://pubmed.ncbi.nlm.nih.gov/28538216/

569

Sallon S, Solowey E, Cohen Y, et al. Germination, genetics, and growth of an ancient date seed. Science. 2008;320(5882):1464. https://pubmed.ncbi.nlm.nih.gov/18556553/

570

Yashina S, Gubin S, Maksimovich S, Yashina A, Gakhova E, Gilichinsky D. Regeneration of whole fertile plants from 30,000-y-old fruit tissue buried in Siberian permafrost. Proc Natl Acad Sci U S A. 2012;109(10):4008–13. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3309767/

571

Rando TA, Chang HY. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell. 2012;148(1–2):46–57. https://pubmed.ncbi.nlm.nih.gov/22265401/

572

Rando TA, Chang HY. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell. 2012;148(1–2):46–57. https://pubmed.ncbi.nlm.nih.gov/22265401/

573

Американская кантри-певица и киноактриса. – Примеч. ред.

574

BBC News. 1997: Dolly the sheep is cloned. On this day: 1950–2005. BBC. http://news.bbc.co.uk/onthisday/hi/dates/stories/february/22/newsid_4245000/4245877.stm. Published February 22, 2005. Accessed May 26, 2021.; https://news.bbc.co.uk/onthisday/hi/dates/stories/february/22/newsid_4245000/4245877.stm

575

Gurdon JB. The cloning of a frog. Development. 2013;140(12):2446–8. https://pubmed.ncbi.nlm.nih.gov/23715536/

576

Burgstaller JP, Brem G. Aging of cloned animals: a mini-review. Gerontology. 2017;63(5):417–25. https://pubmed.ncbi.nlm.nih.gov/27820924/

577

López-León M, Goya RG. The emerging view of aging as a reversible epigenetic process. Gerontology. 2017;63(5):426–31. https://pubmed.ncbi.nlm.nih.gov/28538216/

578

Song S, Johnson FB. Epigenetic mechanisms impacting aging: a focus on histone levels and telomeres. Genes. 2018;9(4):201. https://pubmed.ncbi.nlm.nih.gov/29642537/

579

Rando TA, Chang HY. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell. 2012;148(1–2):46–57. https://pubmed.ncbi.nlm.nih.gov/22265401/

580

Burgstaller JP, Brem G. Aging of cloned animals: a mini-review. Gerontology. 2017;63(5):417–25. https://pubmed.ncbi.nlm.nih.gov/27820924/

581

Wakayama S, Kohda T, Obokata H, et al. Successful serial recloning in the mouse over multiple generations. Cell Stem Cell. 2013;12(3):293–7. https://pubmed.ncbi.nlm.nih.gov/23472871/

582

López-León M, Goya RG. The emerging view of aging as a reversible epigenetic process. Gerontology. 2017;63(5):426–31. https://pubmed.ncbi.nlm.nih.gov/28538216/

583

Waddington CH. The epigenotype. 1942. Int J Epidemiol. 2012;41(1):10–13. https://pubmed.ncbi.nlm.nih.gov/22186258/

584

Watson JD, Crick FHC. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature. 1953;171(4356):737–8. https://pubmed.ncbi.nlm.nih.gov/13054692/

585

Song S, Johnson FB. Epigenetic mechanisms impacting aging: a focus on histone levels and telomeres. Genes. 2018;9(4):201. https://pubmed.ncbi.nlm.nih.gov/29642537/

586

Salzberg SL. Open questions: how many genes do we have? BMC Biol. 2018;16(1):94. https://pubmed.ncbi.nlm.nih.gov/30124169/

587

Govindaraju D, Atzmon G, Barzilai N. Genetics, lifestyle and longevity: lessons from centenarians. Appl Transl Genom. 2015;4:23–32. https://pubmed.ncbi.nlm.nih.gov/26937346/

588

vel Szic KS, Declerck K, Vidakovic M, Vanden Berghe W. From inflammaging to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition? Clin Epigenet. 2015;7(1):33. https://pubmed.ncbi.nlm.nih.gov/25861393/

589

Li X, Yi C. A novel epigenetic mark derived from vitamin C. Biochemistry. 2020;59(1):8–9. https://pubmed.ncbi.nlm.nih.gov/31538774/

590

Ciccarone F, Tagliatesta S, Caiafa P, Zampieri M. DNA methylation dynamics in aging: how far are we from understanding the mechanisms? Mech Ageing Dev. 2018;174:3–17. https://pubmed.ncbi.nlm.nih.gov/29268958/

591

Mitteldorf J. How does the body know how old it is? Introducing the epigenetic clock hypothesis. In: Yashin AI, Jazwinski SM, eds. Aging and Health – A


Скачать книгу