A History of Aeronautics. Evelyn Charles Vivian

A History of Aeronautics - Evelyn Charles Vivian


Скачать книгу
may be no wind, yet the effort of his falling will carry up the wind, which the sail will hold, by which means he does not fall suddenly but descends little by little. The size of the sail should be measured to the man.’ By this last, evidently, Veranzio intended to convey that the sheet must be of such content as would enclose sufficient air to support the weight of the parachutist.

      Veranzio made his experiments about 1617–1618, but, naturally, they carried him no farther than the mere descent to earth, and since a descent is merely a descent, it is to be conjectured that he soon got tired of dropping from high roofs, and took to designing architecture instead of putting it to such a use. With the end of his experiments the work of da Vinci in relation to flying became neglected for nearly four centuries.

      Apart from these two experimenters, there is little to record in the matter either of experiment or study until the seventeenth century. Francis Bacon, it is true, wrote about flying in his Sylva Sylvarum, and mentioned the subject in the New Atlantis, but, except for the insight that he showed even in superficial mention of any specific subject, he does not appear to have made attempt at serious investigation. ‘Spreading of Feathers, thin and close and in great breadth will likewise bear up a great Weight,’ says Francis, ‘being even laid without Tilting upon the sides.’ But a lesser genius could have told as much, even in that age, and though the great Sir Francis is sometimes adduced as one of the early students of the problems of flight, his writings will not sustain the reputation.

      The seventeenth century, however, gives us three names, those of Borelli, Lana, and Robert Hooke, all of which take definite place in the history of flight. Borelli ranks as one of the great figures in the study of aeronautical problems, in spite of erroneous deductions through which he arrived at a purely negative conclusion with regard to the possibility of human flight.

      Borelli was a versatile genius. Born in 1608, he was practically contemporary with Francesco Lana, and there is evidence that he either knew or was in correspondence with many prominent members of the Royal Society of Great Britain, more especially with John Collins, Dr. Wallis, and Henry Oldenburgh, the then Secretary of the Society. He was author of a long list of scientific essays, two of which only are responsible for his fame, viz., Theorice Medicæarum Planetarum, published in Florence, and the better known posthumous De Motu Animalium. The first of these two is an astronomical study in which Borelli gives evidence of an instinctive knowledge of gravitation, though no definite expression is given of this. The second work, De Motu Animalium, deals with the mechanical action of the limbs of birds and animals and with a theory of the action of the internal organs. A section of the first part of this work, called De Volatu, is a study of bird flight; it is quite independent of Da Vinci’s earlier work, which had been forgotten and remained unnoticed until near on the beginning of practical flight.

      Marey, in his work, La Machine Animale, credits Borelli with the first correct idea of the mechanism of flight. He says: ‘Therefore we must be allowed to render to the genius of Borelli the justice which is due to him, and only claim for ourselves the merit of having furnished the experimental demonstration of a truth already suspected.’ In fact, all subsequent studies on this subject concur in making Borelli the first investigator who illustrated the purely mechanical theory of the action of a bird’s wings.

      Borelli’s study is divided into a series of propositions in which he traces the principles of flight, and the mechanical actions of the wings of birds. The most interesting of these are the propositions in which he sets forth the method in which birds move their wings during flight and the manner in which the air offers resistance to the stroke of the wing. With regard to the first of these two points he says: ‘When birds in repose rest on the earth their wings are folded up close against their flanks, but when wishing to start on their flight they first bend their legs and leap into the air. Whereupon the joints of their wings are straightened out to form a straight line at right angles to the lateral surface of the breast, so that the two wings, outstretched, are placed, as it were, like the arms of a cross to the body of the bird. Next, since the wings with their feathers attached form almost a plane surface, they are raised slightly above the horizontal, and with a most quick impulse beat down in a direction almost perpendicular to the wing-plane, upon the underlying air; and to so intense a beat the air, notwithstanding it to be fluid, offers resistance, partly by reason of its natural inertia, which seeks to retain it at rest, and partly because the particles of the air, compressed by the swiftness of the stroke, resist this compression by their elasticity, just like the hard ground. Hence the whole mass of the bird rebounds, making a fresh leap through the air; whence it follows that flight is simply a motion composed of successive leaps accomplished through the air. And I remark that a wing can easily beat the air in a direction almost perpendicular to its plane surface, although only a single one of the corners of the humerus bone is attached to the scapula, the whole extent of its base remaining free and loose, while the greater transverse feathers are joined to the lateral skin of the thorax. Nevertheless the wing can easily revolve about its base like unto a fan. Nor are there lacking tendon ligaments which restrain the feathers and prevent them from opening farther, in the same fashion that sheets hold in the sails of ships. No less admirable is nature’s cunning in unfolding and folding the wings upwards, for she folds them not laterally, but by moving upwards edgewise the osseous parts wherein the roots of the feathers are inserted; for thus, without encountering the air’s resistance the upward motion of the wing surface is made as with a sword, hence they can be uplifted with but small force. But thereafter when the wings are twisted by being drawn transversely and by the resistance of the air, they are flattened as has been declared and will be made manifest hereafter.’

      Then with reference to the resistance to the air of the wings he explains: ‘The air when struck offers resistance by its elastic virtue through which the particles of the air compressed by the wing-beat strive to expand again. Through these two causes of resistance the downward beat of the wing is not only opposed, but even caused to recoil with a reflex movement; and these two causes of resistance ever increase the more the down stroke of the wing is maintained and accelerated. On the other hand, the impulse of the wing is continuously diminished and weakened by the growing resistance. Hereby the force of the wing and the resistance become balanced; so that, manifestly, the air is beaten by the wing with the same force as the resistance to the stroke.’

      He concerns himself also with the most difficult problem that confronts the flying man of to-day, namely, landing effectively, and his remarks on this subject would be instructive even to an air pilot of these days: ‘Now the ways and means by which the speed is slackened at the end of a flight are these. The bird spreads its wings and tail so that their concave surfaces are perpendicular to the direction of motion; in this way, the spreading feathers, like a ship’s sail, strike against the still air, check the speed, and so that most of the impetus may be stopped, the wings are flapped quickly and strongly forward, inducing a contrary motion, so that the bird absolutely or very nearly stops.’

      At the end of his study Borelli came to a conclusion which militated greatly against experiment with any heavier-than-air apparatus, until well on into the nineteenth century, for having gone thoroughly into the subject of bird flight he states distinctly in his last proposition on the subject that ‘It is impossible that men should be able to fly craftily by their own strength.’ This statement, of course, remains true up to the present day, for no man has yet devised the means by which he can raise himself in the air and maintain himself there by mere muscular effort.

      From the time of Borelli up to the development of the steam engine it may be said that flight by means of any heavier-than-air apparatus was generally regarded as impossible, and apart from certain deductions which a little experiment would have shown to be doomed to failure, this method of flight was not followed up. It is not to be wondered at, when Borelli’s exaggerated estimate of the strength expended by birds in proportion to their weight is borne in mind; he alleged that the motive force in birds’ wings is 10,000 times greater than the resistance of their weight, and with regard to human flight he remarks:—

      ‘When, therefore, it is asked whether men may be able to fly by their own strength, it must be seen whether the motive power of the pectoral muscles (the strength of which is indicated and measured by their size) is proportionately great, as it is evident that it must exceed the resistance of the weight of the whole human body 10,000 times, together with the


Скачать книгу