A History of Aeronautics. Evelyn Charles Vivian

A History of Aeronautics - Evelyn Charles Vivian


Скачать книгу
of these dimensions Lana proposed to make an aerial ship of the fashion shown in his quaint illustration. He is careful to point out a method by which the supporting globes for the aerial ship may be entirely emptied of air; this is to be done by connecting to each globe a tube of copper which is ‘at least a length of 47 modern Roman palmi.’ A small tap is to close this tube at the end nearest the globe, and then vessel and tube are to be filled with water, after which the tube is to be immersed in water and the tap opened, allowing the water to run out of the vessel, while no air enters. The tap is then closed before the lower end of the tube is removed from the water, leaving no air at all in the globe or sphere. Propulsion of this airship was to be accomplished by means of sails, and also by oars.

      Lana antedated the modern propeller, and realised that the air would offer enough resistance to oars or paddle to impart motion to any vessel floating in it and propelled by these means, although he did not realise the amount of pressure on the air which would be necessary to accomplish propulsion. As a matter of fact, he foresaw and provided against practically all the difficulties that would be encountered in the working, as well as the making, of the aerial ship, finally coming up against what his religious training made an insuperable objection. This, again, is best told in his own words:—

      ‘Other difficulties I do not foresee that could prevail against this invention, save one only, which to me seems the greatest of them all, and that is that God would surely never allow such a machine to be successful, since it would create many disturbances in the civil and political governments of mankind.’

      He ends by saying that no city would be proof against surprise, while the aerial ship could set fire to vessels at sea, and destroy houses, fortresses, and cities by fire balls and bombs. In fact, at the end of his treatise on the subject, he furnishes a pretty complete résumé of the activities of German Zeppelins.

      As already noted, Lana himself, owing to his vows of poverty, was unable to do more than put his suggestions on paper, which he did with a thoroughness that has procured him a place among the really great pioneers of flying.

      It was nearly 200 years before any attempt was made to realise his project; then, in 1843, M. Marey Monge set out to make the globes and the ship as Lana detailed them. Monge’s experiments cost him the sum of 25,000 francs 75 centimes, which he expended purely from love of scientific investigation. He chose to make his globes of brass, about .004 in thickness, and weighing 1.465 lbs. to the square yard. Having made his sphere of this metal, he lined it with two thicknesses of tissue paper, varnished it with oil, and set to work to empty it of air. This, however, he never achieved, for such metal is incapable of sustaining the pressure of the outside air, as Lana, had he had the means to carry out experiments, would have ascertained. M. Monge’s sphere could never be emptied of air sufficiently to rise from the earth; it ended in the melting-pot, ignominiously enough, and all that Monge got from his experiment was the value of the scrap metal and the satisfaction of knowing that Lana’s theory could never be translated into practice.

      Robert Hooke is less conspicuous than either Borelli or Lana; his work, which came into the middle of the seventeenth century, consisted of various experiments with regard to flight, from which emerged ‘a Module, which by the help of Springs and Wings, raised and sustained itself in the air.’ This must be reckoned as the first model flying machine which actually flew, except for da Vinci’s helicopters; Hooke’s model appears to have been of the flapping-wing type—he attempted to copy the motion of birds, but found from study and experiment that human muscles were not sufficient to the task of lifting the human body. For that reason, he says, ‘I applied my mind to contrive a way to make artificial muscles,’ but in this he was, as he expresses it, ‘frustrated of my expectations.’ Hooke’s claim to fame rests mainly on his successful model; the rest of his work is of too scrappy a nature to rank as a serious contribution to the study of flight.

      Contemporary with Hooke was one Allard, who, in France, undertook to emulate the Saracen of Constantinople to a certain extent. Allard was a tight-rope dancer who either did or was said to have done short gliding flights—the matter is open to question—and finally stated that he would, at St. Germains, fly from the terrace in the king’s presence. He made the attempt, but merely fell, as did the Saracen some centuries before, causing himself serious injury. Allard cannot be regarded as a contributor to the development of aeronautics in any way, and is only mentioned as typical of the way in which, up to the time of the Wright brothers, flying was regarded. Even unto this day there are many who still believe that, with a pair of wings, man ought to be able to fly, and that the mathematical data necessary to effective construction simply do not exist. This attitude was reasonable enough in an unlearned age, and Allard was one—a little more conspicuous than the majority—among many who made experiment in ignorance, with more or less danger to themselves and without practical result of any kind.

      Besnier’s Flying Apparatus.

      The seventeenth century was not to end, however, without practical experiment of a noteworthy kind in gliding flight. Among the recruits to the ranks of pioneers was a certain Besnier, a locksmith of Sablé, who somewhere between 1675 and 1680 constructed a glider of which a crude picture has come down to modern times. The apparatus, as will be seen, consisted of two rods with hinged flaps, and the original designer of the picture seems to have had but a small space in which to draw, since obviously the flaps must have been much larger than those shown. Besnier placed the rods on his shoulders, and worked the flaps by cords attached to his hands and feet—the flaps opened as they fell, and closed as they rose, so the device as a whole must be regarded as a sort of flapping glider. Having by experiment proved his apparatus successful, Besnier promptly sold it to a travelling showman of the period, and forthwith set about constructing a second set, with which he made gliding flights of considerable height and distance. Like Lilienthal, Besnier projected himself into space from some height, and then, according to the contemporary records, he was able to cross a river of considerable size before coming to earth. It does not appear that he had any imitators, or that any advantage whatever was taken of his experiments; the age was one in which he would be regarded rather as a freak exhibitor than as a serious student, and possibly, considering his origin and the sale of his first apparatus to such a client, he regarded the matter himself as more in the nature of an amusement than as a discovery.

      Borelli, coming at the end of the century, proved to his own satisfaction and that of his fellows that flapping wing flight was an impossibility; the capabilities of the plane were as yet undreamed, and the prime mover that should make the plane available for flight was deep in the womb of time. Da Vinci’s work was forgotten—flight was an impossibility, or at best such a useless show as Besnier was able to give.

      The eighteenth century was almost barren of experiment. Emanuel Swedenborg, having invented a new religion, set about inventing a flying machine, and succeeded theoretically, publishing the result of his investigations as follows:—

      ‘Let a car or boat or some like object be made of light material such as cork or bark, with a room within it for the operator. Secondly, in front as well as behind, or all round, set a widely-stretched sail parallel to the machine, forming within a hollow or bend, which could be reefed like the sails of a ship. Thirdly, place wings on the sides, to be worked up and down by a spiral spring, these wings also to be hollow below in order to increase the force and velocity, take in the air, and make the resistance as great as may be required. These, too, should be of light material and of sufficient size; they should be in the shape of birds’ wings, or the sails of a windmill, or some such shape, and should be tilted obliquely upwards, and made so as to collapse on the upward stroke and expand on the downward. Fourth, place a balance or beam below, hanging down perpendicularly for some distance with a small weight attached to its end, pendent exactly in line with the centre of gravity; the longer this beam is, the lighter must it be, for it must have the same proportion as the well-known vectis or steel-yard. This would serve to restore the balance of the machine if it should lean over to any of the four sides. Fifthly, the wings would perhaps have greater force, so as to increase the resistance and make the flight easier, if a hood or shield were placed over them, as is the case with certain insects. Sixthly, when the sails are expanded so as to occupy a great surface and much air,


Скачать книгу