A History of Aeronautics. Evelyn Charles Vivian

A History of Aeronautics - Evelyn Charles Vivian


Скачать книгу
support. His pamphlet, published at Basle in 1784, shows him to have been a painstaking student of the potentialities of flight.

      Jean-Pierre Blanchard, later to acquire fame in connection with balloon flight, conceived and described a curious vehicle, of which he even announced trials as impending. His trials were postponed time after time, and it appears that he became convinced in the end of the futility of his device, being assisted to such a conclusion by Lalande, the astronomer, who repeated Borelli’s statement that it was impossible for man ever to fly by his own strength. This was in the closing days of the French monarchy, and the ascent of the Mongolfiers’ first hot-air balloon in 1783—which shall be told more fully in its place—put an end to all French experiments with heavier-than-air apparatus, though in England the genius of Cayley was about to bud, and even in France there were those who understood that ballooning was not true flight.

      

       SIR GEORGE CAYLEY—THOMAS WALKER

       Table of Contents

      On the fifth of June, 1783, the Montgolfiers’ hot-air balloon rose at Versailles, and in its rising divided the study of the conquest of the air into two definite parts, the one being concerned with the propulsion of gas lifted, lighter-than-air vehicles, and the other being crystallised in one sentence by Sir George Cayley: ‘The whole problem,’ he stated, ‘is confined within these limits, viz.: to make a surface support a given weight by the application of power to the resistance of the air.’ For about ten years the balloon held the field entirely, being regarded as the only solution of the problem of flight that man could ever compass. So definite for a time was this view on the eastern side of the Channel that for some years practically all the progress that was made in the development of power-driven planes was made in Britain.

      In 1800 a certain Dr. Thomas Young demonstrated that certain curved surfaces suspended by a thread moved into and not away from a horizontal current of air, but the demonstration, which approaches perilously near to perpetual motion if the current be truly horizontal, has never been successfully repeated, so that there is more than a suspicion that Young’s air-current was not horizontal. Others had made and were making experiments on the resistance offered to the air by flat surfaces, when Cayley came to study and record, earning such a place among the pioneers as to win the title of ‘father of British aeronautics.’

      Cayley was a man in advance of his time, in many ways. Of independent means, he made the grand tour which was considered necessary to the education of every young man of position, and during this excursion he was more engaged in studies of a semi-scientific character than in the pursuits that normally filled such a period. His various writings prove that throughout his life aeronautics was the foremost subject in his mind; the Mechanic’s Magazine, Nicholson’s Journal, the Philosophical Magazine, and other periodicals of like nature bear witness to Cayley’s continued research into the subject of flight. He approached the subject after the manner of the trained scientist, analysing the mechanical properties of air under chemical and physical action. Then he set to work to ascertain the power necessary for aerial flight, and was one of the first to enunciate the fallacy of the hopes of successful flight by means of the steam engine of those days, owing to the fact that it was impossible to obtain a given power with a given weight.

      Yet his conclusions on this point were not altogether negative, for as early as 1810 he stated that he could construct a balloon which could travel with passengers at 20 miles an hour—he was one of the first to consider the possibilities of applying power to a balloon. Nearly thirty years later—in 1837—he made the first attempt at establishing an aeronautical society, but at that time the power-driven plane was regarded by the great majority as an absurd dream of more or less mad inventors, while ballooning ranked on about the same level as tight-rope walking, being considered an adjunct to fairs and fêtes, more a pastime than a study.

      Up to the time of his death, in 1857, Cayley maintained his study of aeronautical matters, and there is no doubt whatever that his work went far in assisting the solution of the problem of air conquest. His principal published work, a monograph entitled Aerial Navigation, has been republished in the admirable series of ‘Aeronautical Classics’ issued by the Royal Aeronautical Society. He began this work by pointing out the impossibility of flying by means of attached wrings, an impossibility due to the fact that, while the pectoral muscles of a bird account for more than two-thirds of its whole muscular strength, in a man the muscles available for flying, no matter what mechanism might be used, would not exceed one-tenth of his total strength.

      Cayley did not actually deny the possibility of a man flying by muscular effort, however, but stated that ‘the flight of a strong man by great muscular exertion, though a curious and interesting circumstance, inasmuch as it will probably be the means of ascertaining this power and supplying the basis whereon to improve it, would be of little use.’

      From this he goes on to the possibility of using a Boulton and Watt steam engine to develop the power necessary for flight, and in this he saw a possibility of practical result. It is worthy of note that in this connection he made mention of the forerunner of the modern internal combustion engine; ‘The French,’ he said, ‘have lately shown the great power produced by igniting inflammable powders in closed vessels, and several years ago an engine was made to work in this country in a similar manner by inflammation of spirit of tar.’ In a subsequent paragraph of his monograph he anticipates almost exactly the construction of the Lenoir gas engine, which came into being more than fifty-five years after his monograph was published.

      Certain experiments detailed in his work were made to ascertain the size of the surface necessary for the support of any given weight. He accepted a truism of to-day in pointing out that in any matters connected with aerial investigation, theory and practice are as widely apart as the poles. Inclined at first to favour the helicopter principle, he finally rejected this in favour of the plane, with which he made numerous experiments. During these, he ascertained the peculiar advantages of curved surfaces, and saw the necessity of providing both vertical and horizontal rudders in order to admit of side steering as well as the control of ascent and descent, and for preserving equilibrium. He may be said to have anticipated the work of Lilienthal and Pilcher, since he constructed and experimented with a fixed surface glider. ‘It was beautiful,’ he wrote concerning this, ‘to see this noble white bird sailing majestically from the top of a hill to any given point of the plain below it with perfect steadiness and safety, according to the set of its rudder, merely by its own weight, descending at an angle of about eight degrees with the horizon.’

      Sir George Caley, Bart.

      ‘The Father of British Aeronautics.’

      It is said that he once persuaded his gardener to trust himself in this glider for a flight, but if Cayley himself ventured a flight in it he has left no record of the fact. The following extract from his work, Aerial Navigation, affords an instance of the thoroughness of his investigations, and the concluding paragraph also shows his faith in the ultimate triumph of mankind in the matter of aerial flight:—

      ‘The act of flying requires less exertion than from the appearance is supposed. Not having sufficient data to ascertain the exact degree of propelling power exerted by birds in the act of flying, it is uncertain what degree of energy may be required in this respect for vessels of aerial navigation; yet when we consider the many hundreds of miles of continued flight exerted by birds of passage, the idea of its being only a small effort is greatly corroborated. To apply the power of the first mover to the greatest advantage in producing this effect is a very material point. The mode universally adopted by Nature is the oblique waft of the wing. We have only to choose between the direct beat overtaking the velocity of the current, like the oar of a boat, or one applied like the wing, in some assigned degree of obliquity to it. Suppose 35 feet per second to be the velocity of an aerial vehicle, the oar must be moved with this speed previous to its being able to receive any resistance; then if it be only required to obtain a pressure of one-tenth of a lb. upon each square foot it must exceed


Скачать книгу