Liquid Crystals. Iam-Choon Khoo

Liquid Crystals - Iam-Choon Khoo


Скачать книгу
velocity gradient tensor defined by Eq. (3.60).

      The viscosity coefficients γ1 and γ2 are related to the Leslie coefficient αs by [3]

      (3.68a)gamma 1 equals alpha 3 minus alpha 2 comma

      (3.68b)gamma 2 equals alpha 2 plus alpha 3 equals alpha 6 minus alpha 5 period

      Consider the flow configuration depicted in Figure 3.11. Without the magnetic field and setting ϕ = 0, we have

      (3.69a)ModifyingAbove v With right harpoon with barb up equals left-bracket 0 comma 0 comma v left-parenthesis x right-parenthesis right-bracket comma

      (3.69b)n equals left-bracket sine theta comma 0 comma cosine theta right-bracket comma

      (3.69c)upper A Subscript italic x z Baseline equals one half StartFraction italic d v Over italic d x EndFraction comma

      (3.69d)upper N Subscript z Baseline equals omega Subscript y Baseline n Subscript x Baseline equals minus upper A Subscript italic x z Baseline n Subscript x Baseline comma

      (3.69e)upper N Subscript x Baseline equals minus omega Subscript y Baseline n Subscript z Baseline equals upper A Subscript italic x z Baseline n Subscript z Baseline period

      From Eq. (3.66) the viscous torque along the y‐direction is given by

      (3.70)StartLayout 1st Row normal upper Gamma Subscript v i s Baseline equals minus gamma 1 left-parenthesis n Subscript z Baseline upper N Subscript x Baseline minus n Subscript x Baseline upper N Subscript z Baseline right-parenthesis minus gamma 2 left-parenthesis n Subscript z Baseline n Subscript mu Baseline upper A Subscript italic mu x Baseline minus n Subscript x Baseline n Subscript mu Baseline upper A Subscript italic mu z Baseline right-parenthesis 2nd Row equals minus one half StartFraction italic d v Over italic d x EndFraction left-bracket gamma 1 plus gamma 2 left-parenthesis cosine squared theta minus sine squared theta right-parenthesis right-bracket 3rd Row equals minus StartFraction italic d v Over italic d x EndFraction left-bracket alpha 3 cosine squared theta minus alpha 2 sine squared theta right-parenthesis right-bracket period EndLayout

      In the steady state, from which the shear torque vanishes, a stable director axis orientation is induced by the flow with an angle θflow given by

      (3.71)cosine 2 theta Subscript flow Baseline equals minus StartFraction gamma 1 Over gamma 2 EndFraction period

      For more complicated flow geometries, the director axis orientation will assume correspondingly complex profiles.

      

      3.6.1. Field‐induced Reorientation Without Flow Coupling: Freedericksz Transition

      (3.72a)upper F 2 equals StartFraction upper K 2 Over 2 EndFraction left-parenthesis StartFraction partial-differential theta Over partial-differential z EndFraction right-parenthesis squared

      and

      (3.72b)normal upper Gamma equals upper K 2 StartFraction partial-differential squared theta Over partial-differential z squared EndFraction z period

Schematic illustration of pure twist deformation induced by an external magnetic field H on a planar sample; there is no fluid motion.

      The viscous torque is given by

      (3.73)normal upper Gamma Subscript v i s Baseline equals minus gamma 1 StartFraction italic d theta Over italic d t EndFraction period

      The torque exerted by the external field ModifyingAbove upper H With right harpoon with barb up (applied perpendicular to the initial director axis), from Eq. (3.29), becomes

      (3.74)normal upper Gamma Subscript e x t Baseline equals normal upper Delta chi Superscript m Baseline upper H squared sine theta cosine theta period

      Hence, the torque balance τ equation gives