Liquid Crystals. Iam-Choon Khoo

Liquid Crystals - Iam-Choon Khoo


Скачать книгу
alt="ModifyingAbove Above ModifyingAbove upper K With right harpoon with barb up With right harpoon with barb up"/> along the principal axis and S is the order parameter.

      (3.42)epsilon Subscript parallel-to Baseline equals epsilon Subscript l Baseline plus two thirds normal upper Delta epsilon

      and

      (3.43)epsilon Subscript up-tack Baseline equals epsilon Subscript l Baseline minus one third normal upper Delta epsilon comma

      where

      (3.44)StartLayout 1st Row normal upper Delta epsilon equals left-parenthesis StartFraction upper N Over epsilon 0 EndFraction right-parenthesis left-bracket alpha Subscript l Baseline upper K Subscript l Baseline minus alpha Subscript t Baseline upper K Subscript t Baseline right-bracket upper S 2nd Row equals StartFraction upper N Subscript upper A Baseline rho Over epsilon 0 upper M EndFraction left-parenthesis alpha Subscript l Baseline upper K Subscript l Baseline minus alpha Subscript t Baseline upper K Subscript t Baseline right-parenthesis upper S tilde italic rho upper S EndLayout

      and

      (3.45)epsilon Subscript l Baseline equals 1 plus StartFraction upper N Subscript upper A Baseline rho Over 3 epsilon 0 upper M EndFraction left-parenthesis alpha Subscript l Baseline upper K Subscript l Baseline plus 2 alpha Subscript t Baseline upper K Subscript t Baseline right-parenthesis period

      Notice that we have replaced N by NAρ/M, where NA is Avogadro’s number, ρ is the density, and M is the mass number.

      and

      In other words, the temperature (T) dependence of ε|| and ε (and the corresponding refractive indices n|| and n) is through the dependences of ρ and S on T.

      (3.48)StartFraction italic d n Subscript parallel-to Baseline Over italic d upper T EndFraction equals StartFraction 1 Over n Subscript parallel-to Baseline EndFraction left-parenthesis upper C 1 StartFraction italic d rho Over italic d upper T EndFraction plus two thirds upper C 2 upper S StartFraction italic d rho Over italic d upper T EndFraction plus two thirds upper C 2 rho StartFraction italic d upper S Over italic d upper T EndFraction right-parenthesis comma

      (3.49)StartFraction italic d n Subscript up-tack Baseline Over italic d upper T EndFraction equals StartFraction 1 Over n Subscript up-tack Baseline EndFraction left-parenthesis upper C 1 StartFraction italic d rho Over italic d upper T EndFraction minus one third upper C 2 upper S StartFraction italic d rho Over italic d upper T EndFraction minus one third upper C 2 rho StartFraction italic d upper S Over italic d upper T EndFraction right-parenthesis period

      Studies of the optical refractive indices of liquid crystals, as presented previously, are traditionally confined to what one may term as the classical and steady‐state regime. In this regime, the molecules are assumed to be in the ground state, and the optical field intensity is stationary. Results or conclusions obtained from such an approach, which have been outlined previously and in the next section, have to be considered in the proper context when these fundamental assumptions about the state of the molecules and the applied field are no longer true.

Schematic illustration of (a) Temperature dependence of the refractive indices of 5CB in the visible spectrum. (b) Temperature dependence of the refractive indices of 5CB in the infrared (10.6 <hr><noindex><a href=Скачать книгу