Математические модели в естественнонаучном образовании. Том I. Денис Владимирович Соломатин
Анализ нелинейных моделей
В отличие от простой линейной модели, описывающей экспоненциальный рост, нелинейные модели, такие как дискретная логистическая, могут описывать достаточно сложную динамику поведения. Без сомнения, это стало заметным в ходе выполнения некоторые упражнений из предыдущего раздела.
В этом разделе рассмотрим несколько конкретных типов поведения и разработаем простые инструменты для их изучения.
Начнём с моделирования таких явлений, как переходные процессы, равновесие и стабилизация. Полезно выделить несколько аспектов, связанных с поведением динамической модели. Иногда, несмотря на первоначальную уникальность, после того как прошло много шагов, поведение модели становится шаблонным. Первые несколько шагов итерации, однако, могут не указывать на то, что подобное произойдет в долгосрочной перспективе. Например, с дискретной логистической моделью
Как правило, исследователей интересует долгосрочное поведение модели. Причина этого заключается в том, что изучаемая система не должна быть разрушена раньше, чем прекратятся переходные процессы. Часто, но далеко не всегда, долгосрочное поведение не зависит от точной численности исходной популяции. В модели
Определение. Равновесным значением для модели
Нахождение равновесных значений сводится к решению уравнения равновесия. Для модели
Вопросы для самопроверки:
– Графически тоже можно найти равновесия, выполнив поиск пересечения кривой
Тем не менее, Равновесие все еще может иметь различные качественные особенности. В примере выше