SSWI: алгоритмы и практические примеры. Алгоритмы и коды, практические примеры. ИВВ
энергетика.
Код будет зависеть от выбранного языка программирования и используемых алгоритмов оптимизации и моделей прогнозирования. Вот пример общего шаблона кода на языке Python
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from scipy.optimize import minimize
# Шаг 1: Подготовка данных
# Загрузка временных значений SSWI, параметров и временных меток
sswi_data =…
alpha_data =…
beta_data = …
gamma_data = …
delta_data = …
epsilon_data = …
timestamps = …
# Шаг 2: Разделение данных
# Разделение набора данных на обучающий и тестовый наборы
x_train, x_test, y_train, y_test = train_test_split(
np.column_stack((alpha_data, beta_data, gamma_data, delta_data, epsilon_data)),
sswi_data,
test_size=0.2,
shuffle=False
)
# Шаг 3: Оптимизация параметров
# Определение функции ошибки для оптимизации
def error_function(params):
alpha, beta, gamma, delta, epsilon = params
sswi_predicted = (alpha * beta * gamma) / (delta * epsilon)
return mean_squared_error(y_train, sswi_predicted)
# Начальные значения параметров
initial_params = [1.0, 1.0, 1.0, 1.0, 1.0]
# Оптимизация параметров с использованием метода minimize
optimized_params = minimize (error_function, initial_params, method=«Nelder-Mead’).x
# Шаг 4: Построение модели прогнозирования
# Использование оптимальных значений параметров для модели прогнозирования
alpha_opt, beta_opt, gamma_opt, delta_opt, epsilon_opt = optimized_params
# Шаг 5: Тестирование производительности модели
# Прогнозирование значения SSWI на тестовом наборе данных
sswi_predicted_test = (alpha_opt * beta_opt * gamma_opt) / (delta_opt * epsilon_opt)
# Оценка ошибки прогнозирования на тестовом наборе
mse_test = mean_squared_error (y_test, sswi_predicted_test)
# Шаг 6: Использование оптимальных значений параметров
# Использование оптимальных значений параметров для прогнозирования будущих значений SSWI
# Вывод результатов
print («Оптимальные значения параметров:»)
print (f"Alpha: {alpha_opt}»)
print (f"Beta: {beta_opt}»)
print(f"Gamma: {gamma_opt}")
print (f"Delta: {delta_opt}»)
print (f"Epsilon: {epsilon_opt}»)
print("Ошибка прогнозирования на тестовом наборе данных:", mse_test)
Обратите внимание, что в этом коде используется библиотека scikit-learn для разбиения данных на обучающий и тестовый наборы, а также для оценки ошибки прогнозирования (MSE). Также используется функция minimize из библиотеки SciPy для оптимизации параметров с использованием метода Nelder-Mead.
Алгоритм прогнозирования изменений в SSWI с использованием машинного обучения
Алгоритм прогнозирования изменений в SSWI с использованием машинного обучения предоставляет инструменты для прогнозирования будущих значений SSWI и изменений в SSWI на основе предыдущих данных и состояний параметров α, β, γ, δ, ε.
Эти алгоритмы основаны на моделях машинного обучения, таких как регрессионные модели или нейронные сети, которые обучаются на исторических данных, чтобы выявить закономерности и связи между параметрами и изменениями в SSWI.
Построение модели машинного обучения позволяет захватить сложные зависимости между параметрами и изменениями в SSWI, что может