SSWI: алгоритмы и практические примеры. Алгоритмы и коды, практические примеры. ИВВ
= gamma[:train_size]
test_gamma = gamma[train_size:]
train_delta = delta [:train_size]
test_delta = delta[train_size:]
train_epsilon = epsilon [:train_size]
test_epsilon = epsilon[train_size:]
# Шаг 4: Обучение модели прогнозирования
# Обучение модели SARIMA на обучающем наборе данных
model.fit(train_sswi, exog=train_alpha)
# Шаг 5: Тестирование производительности модели
# Прогнозирование на тестовом наборе данных
forecast = model.predict(start=len(train_sswi), end=len(train_sswi) + len(test_sswi) – 1,
exog=test_alpha)
# Оценка точности прогноза на тестовом наборе данных
# Шаг 6: Прогнозирование будущих значений
# Прогнозирование будущих значений на основе последних или будущих параметров
future_alpha = alpha [-N: ]
future_forecast = model.forecast(steps=N, exog=future_alpha)
# Вывод результатов
print("Прогноз на тестовом наборе данных:", forecast)
print("Прогноз будущих значений:", future_forecast)
Обратите внимание, что в этом коде SARIMA модель используется для прогнозирования временных рядов. Он также принимает во внимание параметры α, β, γ, δ, ε как экзогенные переменные.
Загружаются данные, разделяются на обучающий и тестовый наборы данных, модель обучается на обучающих данных, а затем оценивается производительность модели и делаются прогнозы на тестовом наборе данных и будущих значениях.
Линейная регрессия с использованием параметров α, β, γ, δ, ε для прогнозирования SSWI
Алгоритм линейной регрессии с использованием параметров α, β, γ, δ, ε для прогнозирования SSWI предоставляет набор инструментов для прогнозирования будущих значений SSWI и изменений в нем. Он основан на анализе предыдущих данных о SSWI и состояний параметров α, β, γ, δ, ε. Этот алгоритм может быть полезен для стратегического планирования, контроля процессов и управления системами, которые зависят от синхронизированных взаимодействий в ядрах атомов.
Алгоритм прогнозирования будущих значений SSWI на основе временных рядов:
– Собрать временные данные о значений SSWI, параметров α, β, γ, δ, ε и соответствующих временных метках.
– Построить модель прогнозирования временных рядов, такую как ARIMA, SARIMA, или LSTM нейронную сеть.
– Разделить данные на обучающий и тестовый наборы, используя временные метки для определения точки разделения.
– Обучить модель прогнозирования на обучающей выборке, используя исторические данные SSWI и соответствующие параметры.
– Протестировать производительность модели на тестовом наборе, оценивая точность и остаточные ошибки прогноза.
– Использовать обученную модель для прогнозирования будущих значений SSWI на основе последних или будущих значений параметров α, β, γ, δ, ε.
Алгоритм прогнозирования будущих значений SSWI на основе временных рядов
1. Сбор временных данных:
– Собрать временные данные о значениях SSWI, параметров α, β, γ, δ, ε и соответствующих временных метках.
2. Построение модели прогнозирования временных рядов:
– Выбрать модель прогнозирования временных рядов, такую как ARIMA, SARIMA, LSTM нейронную сеть или другую модель, которая наилучшим образом соответствует характеристикам данных.
– Применить выбранную модель для прогнозирования будущих значений SSWI.
3. Разделение данных:
– Разделить данные на обучающий и тестовый наборы,