Теорема века. Мир с точки зрения математики. Анри Пуанкаре

Теорема века. Мир с точки зрения математики - Анри Пуанкаре


Скачать книгу
почему это должно смущать, если дело касается механики?

      Мы видели, что координаты тел определяются дифференциальными уравнениями второго порядка, и то же самое имеет место для разностей этих координат. Это – то, что мы назвали обобщенным принципом инерции и принципом относительного движения.

      Если бы расстояния этих тел определялись также дифференциальными уравнениями второго порядка, то, кажется, ум должен бы быть вполне удовлетворен. В какой мере он получает это удовлетворение и почему он им не довольствуется?

      Чтобы дать себе в этом отчет, лучше всего взять простой пример. Вообразим систему, аналогичную нашей Солнечной системе, но такую, что из нее нельзя было бы видеть неподвижных звезд, не принадлежащих к этой системе, так что астрономы могли бы наблюдать только взаимные расстояния планет и Солнца, но не абсолютные долготы планет. Если мы выведем непосредственно из закона Ньютона дифференциальные уравнения, определяющие изменение этих расстояний, то эти уравнения не будут второго порядка. Я хочу сказать, что если бы, кроме закона Ньютона, были известны начальные значения этих расстояний и их производных по времени, то этого было бы достаточно для определения значений тех же расстояний для какого-нибудь последующего момента. Недоставало бы еще одного данного, и этим данным могло бы быть, например, то, что астрономы называют константой площадей.

      Но здесь можно стать на две различные точки зрения; мы можем различать два рода констант. В глазах физика мир сводится к ряду явлений, зависящих единственно, с одной стороны, от начальных явлений, с другой – от законов, связывающих последующие явления с предыдущими. Если теперь наблюдение откроет нам, что некоторая величина есть константа, то нам представится выбор между двумя точками зрения.

      Или мы допустим, что существует закон, требующий неизменяемости этой величины, но дело случая, что она в начальный момент имела именно такое значение, а не иное, – значение, которое она должна была потом сохранять. Такую величину можно было бы назвать тогда случайной константой.

      Или, напротив, мы допустим, что существует закон природы, сообщающий этой величине именно такое значение, а не иное. Здесь мы будем иметь то, что можно назвать существенной константой.

      Например, в силу законов Ньютона время обращения Земли должно быть постоянно. Но если оно равно 366 звездным суткам с дробью, а не 300 или 400, то это – результат какой-то неизвестной мне начальной случайности. Это – случайная константа. Если, напротив, показатель степени расстояния, входящий в выражение гравитационной силы, равен 2, а не 3, то это не случайно – этого требует закон Ньютона. Это – существенная константа.

      Я не знаю, будет ли законно само по себе придавать какое-то значение случайности и не является ли такое разграничение искусственным; во всяком случае, пока в природе существуют тайны, оно будет применяться с широким произволом, всегда оставаясь ненадежным.

      Что касается константы площадей, то мы привыкли


Скачать книгу