Elements of Chemistry, In a New Systematic Order, Containing all the Modern Discoveries. Antoine Laurent Lavoisier

Elements of Chemistry, In a New Systematic Order, Containing all the Modern Discoveries - Antoine Laurent Lavoisier


Скачать книгу
retort in a furnace, I observed that, in proportion as the red matter became heated, the intensity of its colour augmented. When the retort was almost red hot, the red matter began gradually to decrease in bulk, and in a few minutes after it disappeared altogether; at the same time 41–½ grains of running mercury were collected in the recipient, and 7 or 8 cubical inches of elastic fluid, greatly more capable of supporting both respiration and combustion than atmospherical air, were collected in the bell-glass.

      A part of this air being put into a glass tube of about an inch diameter, showed the following properties: A taper burned in it with a dazzling splendour, and charcoal, instead of consuming quietly as it does in common air, burnt with a flame, attended with a decrepitating noise, like phosphorus, and threw out such a brilliant light that the eyes could hardly endure it. This species of air was discovered almost at the same time by Mr. Priestley, Mr. Scheele, and myself. Mr. Priestley gave it the name of dephlogisticated air, Mr. Scheele called it empyreal air. At first I named it highly respirable air, to which has since been substituted the term of vital air. We shall presently see what we ought to think of these denominations.

      In reflecting upon the circumstances of this experiment, we readily perceive, that the mercury, during its calcination, absorbs the salubrious and respirable part of the air, or, to speak more strictly, the base of this respirable part; that the remaining air is a species of mephitis, incapable of supporting combustion or respiration; and consequently that atmospheric air is composed of two elastic fluids of different and opposite qualities. As a proof of this important truth, if we recombine these two elastic fluids, which we have separately obtained in the above experiment, viz. the 42 cubical inches of mephitis, with the 8 cubical inches of respirable air, we reproduce an air precisely similar to that of the atmosphere, and possessing nearly the same power of supporting combustion and respiration, and of contributing to the calcination of metals.

      Although this experiment furnishes us with a very simple means of obtaining the two principal elastic fluids which compose our atmosphere, separate from each other, yet it does not give us an exact idea of the proportion in which these two enter into its composition: For the attraction of mercury to the respirable part of the air, or rather to its base, is not sufficiently strong to overcome all the circumstances which oppose this union. These obstacles are the mutual adhesion of the two constituent parts of the atmosphere for each other, and the elective attraction which unites the base of vital air with caloric; in consequence of these, when the calcination ends, or is at least carried as far as is possible, in a determinate quantity of atmospheric air, there still remains a portion of respirable air united to the mephitis, which the mercury cannot separate. I shall afterwards show, that, at least in our climate, the atmospheric air is composed of respirable and mephitic airs, in the proportion of 27 and 73; and I shall then discuss the causes of the uncertainty which still exists with respect to the exactness of that proportion.

      Since, during the calcination of mercury, air is decomposed, and the base of its respirable part is fixed and combined with the mercury, it follows, from the principles already established, that caloric and light must be disengaged during the process: But the two following causes prevent us from being sensible of this taking place: As the calcination lasts during several days, the disengagement of caloric and light, spread out in a considerable space of time, becomes extremely small for each particular moment of that time, so as not to be perceptible; and, in the next place, the operation being carried on by means of fire in a furnace, the heat produced by the calcination itself becomes confounded with that proceeding from the furnace. I might add the respirable part of the air, or rather its base, in entering into combination with the mercury, does not part with all the caloric which it contained, but still retains a part of it after forming the new compound; but the discussion of this point, and its proofs from experiment, do not belong to this part of our subject.

      It is, however, easy to render this disengagement of caloric and light evident to the senses, by causing the decomposition of air to take place in a more rapid manner. And for this purpose, iron is excellently adapted, as it possesses a much stronger affinity for the base of respirable air than mercury. The elegant experiment of Mr. Ingenhouz, upon the combustion of iron, is well known. Take a piece of fine iron wire, twisted into a spiral, (BC, Plate IV. Fig. 17.) fix one of its extremities B into the cork A, adapted to the neck of the bottle DEFG, and fix to the other extremity of the wire C, a small morsel of tinder. Matters being thus prepared, fill the bottle DEFG with air deprived of its mephitic part; then light the tinder, and introduce it quickly with the wire upon which it is fixed, into the bottle which you stop up with the cork A, as is shown in the figure (17 Plate IV.) The instant the tinder comes into contact with the vital air it begins to burn with great intensity; and, communicating the inflammation to the iron-wire, it too takes fire, and burns rapidly, throwing out brilliant sparks, which fall to the bottom of the vessel in rounded globules, which become black in cooling, but retain a degree of metallic splendour. The iron thus burnt is more brittle even than glass, and is easily reduced into powder, and is still attractable by the magnet, though not so powerfully as it was before combustion. As Mr. Ingenhouz has neither examined the change produced on iron, nor upon the air by this operation, I have repeated the experiment under different circumstances, in an apparatus adapted to answer my particular views, as follows.

      Having filled a bell-glass (A, Plate IV. Fig. 3.) of about six pints measure, with pure air, or the highly respirable part of air, I transported this jar by means of a very flat vessel, into a quicksilver bath in the bason BC, and I took care to render the surface of the mercury perfectly dry both within and without the jar with blotting paper. I then provided a small capsule of china-ware D, very flat and open, in which I placed some small pieces of iron, turned spirally, and arranged in such a way as seemed most favourable for the combustion being communicated to every part. To the end of one of these pieces of iron was fixed a small morsel of tinder, to which was added about the sixteenth part of a grain of phosphorus, and, by raising the bell-glass a little, the china capsule, with its contents, were introduced into the pure air. I know that, by this means, some common air must mix with the pure air in the glass; but this, when it is done dexterously, is so very trifling, as not to injure the success of the experiment. This being done, a part of the air is sucked out from the bell-glass, by means of a syphon GHI, so as to raise the mercury within the glass to EF; and, to prevent the mercury from getting into the syphon, a small piece of paper is twisted round its extremity. In sucking out the air, if the motion of the lungs only be used, we cannot make the mercury rise above an inch or an inch and a half; but, by properly using the muscles of the mouth, we can, without difficulty, cause it to rise six or seven inches.

      I next took an iron wire, (MN, Plate IV. Fig. 16.) properly bent for the purpose, and making it red hot in the fire, passed it through the mercury into the receiver, and brought it in contact with the small piece of phosphorus attached to the tinder. The phosphorus instantly takes fire, which communicates to the tinder, and from that to the iron. When the pieces have been properly arranged, the whole iron burns, even to the last particle, throwing out a white brilliant light similar to that of Chinese fireworks. The great heat produced by this combustion melts the iron into round globules of different sizes, most of which fall into the China cup; but some are thrown out of it, and swim upon the surface of the mercury. At the beginning of the combustion, there is a slight augmentation in the volume of the air in the bell-glass, from the dilatation caused by the heat; but, presently afterwards, a rapid diminution of the air takes place, and the mercury rises in the glass; insomuch that, when the quantity of iron is sufficient, and the air operated upon is very pure, almost the whole air employed is absorbed.

      It is proper to remark in this place, that, unless in making experiments for the purpose of discovery, it is better to be contented with burning a moderate quantity of iron; for, when this experiment is pushed too far, so as to absorb much of the air, the cup D, which floats upon the quicksilver, approaches too near the bottom of the bell-glass; and the great heat produced, which is followed by a very sudden cooling, occasioned by the contact of the cold mercury, is apt to break the glass. In which case, the sudden fall of the column of mercury, which happens the moment the least flaw is produced in the glass, causes such a wave, as throws a great part of the quicksilver from the bason. To avoid this inconvenience, and to ensure success to the experiment, one gross and a half of iron is sufficient to burn in a bell-glass, which holds about eight pints of air. The glass


Скачать книгу