Elements of Chemistry, In a New Systematic Order, Containing all the Modern Discoveries. Antoine Laurent Lavoisier

Elements of Chemistry, In a New Systematic Order, Containing all the Modern Discoveries - Antoine Laurent Lavoisier


Скачать книгу
a solvent, and the substance, which in combination with the caloric, forms the base of the gas.

      To these bases of the different gases, which are hitherto but little known, we have been obliged to assign names; these I shall point out in Chap. IV. of this work, when I have previously given an account of the phenomena attendant upon the heating and cooling of bodies, and when I have established precise ideas concerning the composition of our atmosphere.

      We have already shown, that the particles of every substance in nature exist in a certain state of equilibrium, between that attraction which tends to unite and keep the particles together, and the effects of the caloric which tends to separate them. Hence the caloric not only surrounds the particles of all bodies on every side, but fills up every interval which the particles of bodies leave between each other. We may form an idea of this, by supposing a vessel filled with small spherical leaden bullets, into which a quantity of fine sand is poured, which, insinuating into the intervals between the bullets, will fill up every void. The balls, in this comparison, are to the sand which surrounds them exactly in the same situation as the particles of bodies are with respect to the caloric; with this difference only, that the balls are supposed to touch each other, whereas the particles of bodies are not in contact, being retained at a small distance from each other, by the caloric.

      If, instead of spherical balls, we substitute solid bodies of a hexahedral, octohedral, or any other regular figure, the capacity of the intervals between them will be lessened, and consequently will no longer contain the same quantity of sand. The same thing takes place, with respect to natural bodies; the intervals left between their particles are not of equal capacity, but vary in consequence of the different figures and magnitude of their particles, and of the distance at which these particles are maintained, according to the existing proportion between their inherent attraction, and the repulsive force exerted upon them by the caloric.

      In this manner we must understand the following expression, introduced by the English philosophers, who have given us the first precise ideas upon this subject; the capacity of bodies for containing the matter of heat. As comparisons with sensible objects are of great use in assisting us to form distinct notions of abstract ideas, we shall endeavour to illustrate this, by instancing the phenomena which take place between water and bodies which are wetted and penetrated by it, with a few reflections.

      If we immerge equal pieces of different kinds of wood, suppose cubes of one foot each, into water, the fluid gradually insinuates itself into their pores, and the pieces of wood are augmented both in weight and magnitude: But each species of wood will imbibe a different quantity of water; the lighter and more porous woods will admit a larger, the compact and closer grained will admit of a lesser quantity; for the proportional quantities of water imbibed by the pieces will depend upon the nature of the constituent particles of the wood, and upon the greater or lesser affinity subsisting between them and water. Very resinous wood, for instance, though it may be at the same time very porous, will admit but little water. We may therefore say, that the different kinds of wood possess different capacities for receiving water; we may even determine, by means of the augmentation of their weights, what quantity of water they have actually absorbed; but, as we are ignorant how much water they contained, previous to immersion, we cannot determine the absolute quantity they contain, after being taken out of the water.

      The same circumstances undoubtedly take place, with bodies that are immersed in caloric; taking into consideration, however, that water is an incompressible fluid, whereas caloric is, on the contrary, endowed with very great elasticity; or, in other words, the particles of caloric have a great tendency to separate from each other, when forced by any other power to approach; this difference must of necessity occasion very considerable diversities in the results of experiments made upon these two substances.

      Having established these clear and simple propositions, it will be very easy to explain the ideas which ought to be affixed to the following expressions, which are by no means synonimous, but possess each a strict and determinate meaning, as in the following definitions:

      Free caloric, is that which is not combined in any manner with any other body. But, as we live in a system to which caloric has a very strong adhesion, it follows that we are never able to obtain it in the state of absolute freedom.

      Combined caloric, is that which is fixed in bodies by affinity or elective attraction, so as to form part of the substance of the body, even part of its solidity.

      By the expression specific caloric of bodies, we understand the respective quantities of caloric requisite for raising a number of bodies of the same weight to an equal degree of temperature. This proportional quantity of caloric depends upon the distance between the constituent particles of bodies, and their greater or lesser degrees of cohesion; and this distance, or rather the space or void resulting from it, is, as I have already observed, called the capacity of bodies for containing caloric.

      Heat, considered as a sensation, or, in other words, sensible heat, is only the effect produced upon our sentient organs, by the motion or passage of caloric, disengaged from the surrounding bodies. In general, we receive impressions only in consequence of motion, and we might establish it as an axiom, That, without motion, there is no sensation. This general principle applies very accurately to the sensations of heat and cold: When we touch a cold body, the caloric which always tends to become in equilibrio in all bodies, passes from our hand into the body we touch, which gives us the feeling or sensation of cold. The direct contrary happens, when we touch a warm body, the caloric then passing from the body into our hand, produces the sensation of heat. If the hand and the body touched be of the same temperature, or very nearly so, we receive no impression, either of heat or cold, because there is no motion or passage of caloric; and thus no sensation can take place, without some correspondent motion to occasion it.

      When the thermometer rises, it shows, that free caloric is entering into the surrounding bodies: The thermometer, which is one of these, receives its share in proportion to its mass, and to the capacity which it possesses for containing caloric. The change therefore which takes place upon the thermometer, only announces a change of place of the caloric in those bodies, of which the thermometer forms one part; it only indicates the portion of caloric received, without being a measure of the whole quantity disengaged, displaced, or absorbed.

      The most simple and most exact method for determining this latter point, is that described by Mr. de la Place, in the Memoirs of the Academy, No. 1780, p. 364; a summary explanation of which will be found towards the conclusion of this work. This method consists in placing a body, or a combination of bodies, from which caloric is disengaging, in the midst of a hollow sphere of ice; and the quantity of ice melted becomes an exact measure of the quantity of caloric disengaged. It is possible, by means of the apparatus which we have caused to be constructed upon this plan, to determine, not as has been pretended, the capacity of bodies for containing heat, but the ratio of the increase or diminution of capacity produced by determinate degrees of temperature. It is easy with the same apparatus, by means of divers combinations of experiments, to determine the quantity of caloric requisite for converting solid substances into liquids, and liquids into elastic aëriform fluids; and, vice versa, what quantity of caloric escapes from elastic vapours in changing to liquids, and what quantity escapes from liquids during their conversion into solids. Perhaps, when experiments have been made with sufficient accuracy, we may one day be able to determine the proportional quantity of caloric, necessary for producing the several species of gasses. I shall hereafter, in a separate chapter, give an account of the principal results of such experiments as have been made upon this head.

      It remains, before finishing this article, to say a few words relative to the cause of the elasticity of gasses, and of fluids in the state of vapour. It is by no means difficult to perceive that this elasticity depends upon that of caloric, which seems to be the most eminently elastic body in nature. Nothing is more readily conceived, than that one body should become elastic by entering into combination with another body possessed of that quality. We must allow that this is only an explanation of elasticity, by an assumption of elasticity, and that we thus only remove the difficulty one step farther, and that the nature of elasticity, and the reason for caloric being elastic, remains still unexplained. Elasticity in the abstract is nothing more than that quality of


Скачать книгу