Elements of Chemistry, In a New Systematic Order, Containing all the Modern Discoveries. Antoine Laurent Lavoisier
of bodies by which they recede from each other when forced together. This tendency in the particles of caloric to separate, takes place even at considerable distances. We shall be satisfied of this, when we consider that air is susceptible of undergoing great compression, which supposes that its particles were previously very distant from each other; for the power of approaching together certainly supposes a previous distance, at least equal to the degree of approach. Consequently, those particles of the air, which are already considerably distant from each other, tend to separate still farther. In fact, if we produce Boyle's vacuum in a large receiver, the very last portion of air which remains spreads itself uniformly through the whole capacity of the vessel, however large, fills it completely throughout, and presses every where against its sides: We cannot, however, explain this effect, without supposing that the particles make an effort to separate themselves on every side, and we are quite ignorant at what distance, or what degree of rarefaction, this effort ceases to act.
Here, therefore, exists a true repulsion between the particles of elastic fluids; at least, circumstances take place exactly as if such a repulsion actually existed; and we have very good right to conclude, that the particles of caloric mutually repel each other. When we are once permitted to suppose this repelling force, the rationale of the formation of gasses, or aëriform fluids, becomes perfectly simple; tho' we must, at the same time, allow, that it is extremely difficult to form an accurate conception of this repulsive force acting upon very minute particles placed at great distances from each other.
It is, perhaps, more natural to suppose, that the particles of caloric have a stronger mutual attraction than those of any other substance, and that these latter particles are forced asunder in consequence of this superior attraction between the particles of the caloric, which forces them between the particles of other bodies, that they may be able to reunite with each other. We have somewhat analogous to this idea in the phenomena which occur when a dry sponge is dipt into water: The sponge swells; its particles separate from each other; and all its intervals are filled up by the water. It is evident, that the sponge, in the act of swelling, has acquired a greater capacity for containing water than it had when dry. But we cannot certainly maintain, that the introduction of water between the particles of the sponge has endowed them with a repulsive power, which tends to separate them from each other; on the contrary, the whole phenomena are produced by means of attractive powers; and these are, first, The gravity of the water, and the power which it exerts on every side, in common with all other fluids; 2dly, The force of attraction which takes place between the particles of the water, causing them to unite together; 3dly, The mutual attraction of the particles of the sponge with each other; and, lastly, The reciprocal attraction which exists between the particles of the sponge and those of the water. It is easy to understand, that the explanation of this fact depends upon properly appreciating the intensity of, and connection between, these several powers. It is probable, that the separation of the particles of bodies, occasioned by caloric, depends in a similar manner upon a certain combination of different attractive powers, which, in conformity with the imperfection of our knowledge, we endeavour to express by saying, that caloric communicates a power of repulsion to the particles of bodies.
FOOTNOTES:
[2] Whenever the degree of heat occurs in this work, it is stated by the author according to Reaumur's scale. The degrees within brackets are the correspondent degrees of Fahrenheit's scale, added by the translator. E.
[3] Collections of the French Academy of Sciences for that year, p. 420.
[4] Chemical Nomenclature.
[5] As I shall afterwards give a definition, and explain the properties of the liquor called ether, I shall only premise here, that it is a very volatile inflammable liquor, having a considerably smaller specific gravity than water, or even spirit of wine.—A.
[6] It would have been more satisfactory if the Author had specified the degrees of the thermometer at which these heights of the mercury in the barometer are produced.
[7] Vide Memoirs of the French Academy, anno 1780, p. 335.—A.
CHAP. II.
General Views relative to the Formation and Composition of our Atmosphere.
These views which I have taken of the formation of elastic aëriform fluids or gasses, throw great light upon the original formation of the atmospheres of the planets, and particularly that of our earth. We readily conceive, that it must necessarily consist of a mixture of the following substances: First, Of all bodies that are susceptible of evaporation, or, more strictly speaking, which are capable of retaining the state of aëriform elasticity in the temperature of our atmosphere, and under a pressure equal to that of a column of twenty-eight inches of quicksilver in the barometer; and, secondly, Of all substances, whether liquid or solid, which are capable of being dissolved by this mixture of different gasses.
The better to determine our ideas relating to this subject, which has not hitherto been sufficiently considered, let us, for a moment, conceive what change would take place in the various substances which compose our earth, if its temperature were suddenly altered. If, for instance, we were suddenly transported into the region of the planet Mercury, where probably the common temperature is much superior to that of boiling water, the water of the earth, and all the other fluids which are susceptible of the gasseous state, at a temperature near to that of boiling water, even quicksilver itself, would become rarified; and all these substances would be changed into permanent aëriform fluids or gasses, which would become part of the new atmosphere. These new species of airs or gasses would mix with those already existing, and certain reciprocal decompositions and new combinations would take place, until such time as all the elective attractions or affinities subsisting amongst all these new and old gasseous substances had operated fully; after which, the elementary principles composing these gasses, being saturated, would remain at rest. We must attend to this, however, that, even in the above hypothetical situation, certain bounds would occur to the evaporation of these substances, produced by that very evaporation itself; for as, in proportion to the increase of elastic fluids, the pressure of the atmosphere would be augmented, as every degree of pressure tends, in some measure, to prevent evaporation, and as even the most evaporable fluids can resist the operation of a very high temperature without evaporating, if prevented by a proportionally stronger compression, water and all other liquids being able to sustain a red heat in Papin's digester; we must admit, that the new atmosphere would at last arrive at such a degree of weight, that the water which had not hitherto evaporated would cease to boil, and, of consequence, would remain liquid; so that, even upon this supposition, as in all others of the same nature, the increasing gravity of the atmosphere would find certain limits which it could not exceed. We might even extend these reflections greatly farther, and examine what change might be produced in such situations upon stones, salts, and the greater part of the fusible substances which compose the mass of our earth. These would be softened, fused, and changed into fluids, &c.: But these speculations carry me from my object, to which I hasten to return.
By a contrary supposition to the one we have been forming, if the earth were suddenly transported