Animal Locomotion; or, walking, swimming, and flying. James Bell Pettigrew

Animal Locomotion; or, walking, swimming, and flying - James Bell Pettigrew


Скачать книгу
movements, i.e. movements occurring in one plane and produced by the action of two muscles. Locomotion is for the most part produced by the consentaneous action of a great number of muscles; these or their fibres pursuing a variety of directions. This is particularly true of the movements of the extremities in walking, swimming, and flying.

      Muscles are divided into the voluntary, the involuntary, and the mixed, according as the will of the animal can wholly, partly, or in no way control their movements. The voluntary muscles are principally concerned in the locomotion of animals. They are the power which moves the several orders of levers into which the skeleton of an animal resolves itself.

      The movements of the voluntary and involuntary muscles are essentially wave-like in character, i.e. they spread from certain centres, according to a fixed order, and in given directions. In the extremities of animals the centripetal or converging muscular wave on one side of the bone to be moved, is accompanied by a corresponding centrifugal or diverging wave on the other side; the bone or bones by this arrangement being perfectly under control and moved to a hair’s-breadth. The centripetal or converging, and the centrifugal or diverging waves of force are, as already indicated, correlated.15 Similar remarks may be made regarding the different parts of the body of the serpent when creeping, of the body of the fish when swimming, of the wing of the bird when flying, and of our own extremities when walking. In all those cases the moving parts are thrown into curves or waves definitely correlated.

      Fig. 6.—Wing of bird. Shows how the bones of the arm (a), forearm (b), and hand (c), are twisted, and form a conical screw. Compare with Figs. 7 and 8.—Original.

      Fig. 7. Fig. 8.

      Fig. 7.—Anterior extremity of elephant. Shows how the bones of the arm (q), forearm (q´x), and foot (o), are twisted to form an osseous screw. Compare with Figs. 6 and 8.—Original.

      Fig. 8.—Cast or mould of the interior of the left ventricle of the heart of a deer. Shows that the left ventricular cavity is conical and spiral in its nature. a Portion of right ventricular cavity; b, base of left ventricular cavity; x, y, spiral grooves occupied by the spiral musculi papillares; j, q, spiral ridges projecting between the musculi papillares. Compare with Figs. 6 and 7.—Original.

      The force of muscles, according to the experiments of Schwann, increases with their length, and vice versa. It is a curious circumstance, and worthy the attention of those interested in homologies, that the voluntary muscles of the superior and inferior extremities, and more especially of the trunk, are arranged in longitudinal, transverse, and oblique spiral lines, and in layers or strata precisely as in the ventricles of the heart and hollow muscles generally.17 If, consequently, I eliminate the element of bone from these several regions, I reproduce a typical hollow muscle; and what is still more remarkable, if I compare the bones removed (say the bones of the anterior extremity of a quadruped or bird) with the cast obtained from the cavity of a hollow muscle (say the left ventricle of the heart of the mammal), I find that the bones and the cast are twisted upon themselves, and form elegant screws, the threads or ridges of which run in the same direction. This affords a proof that the involuntary hollow muscles supply the type or pattern on which the voluntary muscles are formed. Fig. 6 represents the bones of the wing of the bird; fig. 7 the bones of the anterior extremity of the elephant; and fig. 8 the cast or mould of the cavity of the left ventricle of the heart of the deer.

      Fig. 9.—The Superficial Muscles in the Horse, (after Bagg).

      It has been the almost invariable custom in teaching anatomy, and such parts of physiology as pertain to animal movements, to place much emphasis upon the configuration of the bony skeleton as a whole, and the conformation of its several articular surfaces in particular. This is very natural, as the osseous system stands the wear and tear of time, while all around it is in a great measure perishable. It is the link which binds extinct forms to living ones, and we naturally venerate and love what is enduring. It is no marvel that Oken, Goethe, Owen, and others should have attempted such splendid generalizations with regard to the osseous system—should have proved with such cogency of argument that the head is an expanded vertebra. The bony skeleton is a miracle of design very wonderful and very beautiful in its way. But when all has been said, the fact remains that the skeleton, when it exists, forms only an adjunct of locomotion and motion generally. All the really essential movements of an animal occur in its soft parts. The osseous system is therefore to be regarded as secondary in importance to the muscular, of which it may be considered a differentiation. Instead of regarding the muscles as adapted to the bones, the bones ought to be regarded as adapted to the muscles. Bones have no power either of originating or perpetuating motion. This begins and terminates in the muscles. Nor must it be overlooked, that bone makes its appearance comparatively late in the scale of being; that innumerable creatures exist in which no trace either of an external or internal skeleton is to be found; that these creatures move freely about, digest, circulate their nutritious juices and blood when present, multiply, and perform all the functions incident to life. While the skeleton is to be found in only a certain proportion of the animals existing on our globe, the soft parts are to be met with in all; and this appears to me an all-sufficient reason for attaching great importance to the movements of soft parts, such as protoplasm, jelly masses, involuntary and voluntary muscles, etc.18 As the muscles of vertebrates are accurately applied to each other, and to the bones, while the bones are rigid, unyielding, and incapable of motion, it follows that the osseous system acts as a break or boundary to the muscular one—and hence the arbitrary division of muscles into extensors and flexors, pronators and supinators, abductors and adductors. This division although convenient is calculated to mislead. The most highly organized animal is strictly speaking to be regarded as a living mass whose parts (hard, soft, and otherwise) are accurately adapted to each other, every part reciprocating with scrupulous exactitude, and rendering it difficult to determine where motion begins and where it terminates. Fig. 9 shows the more superficial of the muscular masses which move the bones or osseous levers of the horse, as seen in the walk, trot, gallop, etc. A careful examination of these carneous masses or muscles will show that they run longitudinally, transversely, and obliquely, the longitudinal and transverse muscles crossing each other at nearly right angles, the oblique ones tending to cross at various angles, as in the letter X. The crossing is seen to most advantage in the deep muscles.

      In order to understand the twisting which occurs to a greater or less extent in the bodies and extremities (when present) of all vertebrated animals, it is necessary to reduce the bony and muscular systems to their simplest


Скачать книгу