Animal Locomotion; or, walking, swimming, and flying. James Bell Pettigrew
a dorsal, ventral, or lateral direction only, a dorsal and ventral or a right and left lateral set of longitudinal muscles acting upon straight bones articulated by an ordinary ball-and-socket joint will suffice. In this case the dorsal, ventral, and right and left lateral muscles form muscular cycles; contraction or shortening on the one aspect of the cycle being accompanied by relaxation or elongation on the other, the bones and joints forming as it were the diameters of the cycles, and oscillating in a backward, forward, or lateral direction in proportion to the degree and direction of the muscular movements. Here the motion is confined to two planes intersecting each other at right angles. When, however, the muscular system becomes more highly differentiated, both as regards the number of the muscles employed, and the variety of the directions pursued by them, the bones and joints also become more complicated. Under these circumstances, the bones, as a rule, are twisted upon themselves, and their articular surfaces present various degrees of spirality to meet the requirements of the muscular system. Between the straight longitudinal muscles, therefore, arranged in dorsal and ventral, and right and left lateral sets, and those which run in a more or less transverse direction, and between the simple joint whose motion is confined to one plane and the ball-and-socket joints whose movements are universal, every degree of obliquity is found in the direction of the muscles, and every possible modification in the disposition of the articular surfaces. In the fish the muscles are for the most part arranged in dorsal, ventral, and lateral sets, which run longitudinally; and, as a result, the movements of the trunk, particularly towards the tail, are from side to side and sinuous. As, however, oblique fibres are also present, and the tendons of the longitudinal muscles in some instances cross obliquely towards the tail, the fish has also the power of tilting or twisting its trunk (particularly the lower half) as well as the caudal fin. In a mackerel which I examined, the oblique muscles were represented by the four lateral masses occurring between the dorsal, ventral, and lateral longitudinal muscles—two of these being found on either side of the fish, and corresponding to the myocommas or “grand muscle latéral” of Cuvier. The muscular system of the fish would therefore seem to be arranged on a fourfold plan—there being four sets of longitudinal muscles, and a corresponding number of slightly oblique and oblique muscles, the oblique muscles being spiral in their nature and tending to cross or intersect at various angles, an arrest of the intersection, as it appears to me, giving rise to the myocommas and to that concentric arrangement of their constituent parts so evident on transverse section. This tendency of the muscular fibres to cross each other at various degrees of obliquity may also be traced in several parts of the human body, as, for instance, in the deltoid muscle of the arm and the deep muscles of the leg. Numerous other examples of penniform muscles might be adduced. Although the fibres of the myocommas have a more or less longitudinal direction, the myocommas themselves pursue an oblique spiral course from before backwards and from within outwards, i.e. from the spine towards the periphery, where they receive slightly oblique fibres from the longitudinal dorsal, ventral, and lateral muscles. As the spiral oblique myocommas and the oblique fibres from the longitudinal muscles act directly and indirectly upon the spines of the vertebræ, and the vertebræ themselves to which they are specially adapted, and as both sets of oblique fibres are geared by interdigitation to the fourfold set of longitudinal muscles, the lateral, sinuous, and rotatory movements of the body and tail of the fish are readily accounted for. The spinal column of the fish facilitates the lateral sinuous twisting movements of the tail and trunk, from the fact that the vertebræ composing it are united to each other by a series of modified universal joints—the vertebræ supplying the cup -shaped depressions or sockets, the intervertebral substance, the prominence or ball.
The same may be said of the general arrangement of the muscles in the trunk and tail of the Cetacea, the principal muscles in this case being distributed, not on the sides, but on the dorsal and ventral aspects. The lashing of the tail in the whales is consequently from above downwards or vertically, instead of from side to side. The spinal column is jointed as in the fish, with this difference, that the vertebræ (especially towards the tail) form the rounded prominences or ball, the meniscus or cup-shaped intervertebral plates the receptacles or socket.
When limbs are present, the spine may be regarded as being ideally divided, the spiral movements, under these circumstances, being thrown upon the extremities by typical ball-and-socket joints occurring at the shoulders and pelvis. This is peculiarly the case in the seal, where the spirally sinuous movements of the spine are transferred directly to the posterior extremities.19
The extremities, when present, are provided with their own muscular cycles of extensor and flexor, abductor and adductor, pronator and supinator muscles—these running longitudinally and at various degrees of obliquity, and enveloping the hard parts according to their direction—the bones being twisted upon themselves and furnished with articular surfaces which reflect the movements of the muscular cycles, whether these occur in straight lines anteriorly, posteriorly, or laterally, or in oblique lines in intermediate situations. The straight and oblique muscles are principally brought into play in the movements of the extremities of quadrupeds, bipeds, etc. in walking; in the movements of the tails and fins of fishes, whales, etc. in swimming; and in the movements of the wings of insects, bats, and birds in flying. The straight and oblique muscles are usually found together, and co-operate in producing the movements in question; the amount of rotation in a part always increasing as the oblique muscles preponderate. The combination of ball-and-socket and hinge-joints, with their concomitant oblique and longitudinal muscular cycles (the former occurring in their most perfect forms where the extremities are united to the trunk, the latter in the extremities themselves), enable the animal to present, when necessary, an extensive resisting surface the one instant, and a greatly diminished and a comparatively non-resisting one the next. This arrangement secures the subtlety and nicety of motion demanded by the several media at different stages of progression.
Fig. 10. Fig. 11. Fig. 12. Fig. 13. Fig. 14.
Fig. 10.—Extreme form of compressed foot, as seen in the deer, ox, etc., adapted specially for land transit.—Original.
Fig. 11.—Extreme form of expanded foot, as seen in the Ornithorhynchus, etc., adapted more particularly for swimming.—Original.
Figs. 12 and 13.—Intermediate form of foot, as seen in the otter (fig. 12), frog (fig. 13), etc. Here the foot is equally serviceable in and out of the water.—Original.
Fig. 14.—Foot of the seal, which opens and closes in the act of natation, the organ being folded upon itself during the non-effective or return stroke, and expanded during the effective or forward stroke. Due advantage is taken of this arrangement by the seal when swimming, the animal rotating on its long axis, so as to present the lower portion of the body and the feet obliquely to the water during the return stroke, and the flat, or the greatest available surface of both, during the effective or forward stroke.—Original.
The travelling surfaces of Animals modified and adapted to the medium on or in which they move.—In those land animals which take to the water occasionally, the feet, as a rule, are furnished with membranous expansions extending between the toes. Of such the Otter (fig. 12), Ornithorhynchus (fig. 11), Seal (fig. 14), Crocodile, Sea-Bear (fig. 37, p. 76), Walrus, Frog (fig. 13), and Triton, may be cited. The crocodile and triton, in addition to the membranous expansion occurring between the toes, are supplied with a powerful swimming-tail, which adds very materially to the surface engaged in natation. Those animals, one and all, walk awkwardly, it always happening that when the extremities are modified to operate upon two essentially different media (as, for instance, the land and water), the maximum of speed is attained in neither. For this reason those animals which swim the best, walk, as a rule, with the greatest difficulty, and vice versâ, as the movements of the auk and seal in and out of the water amply testify.
In addition to those land animals which run and swim, there are some which precipitate themselves, parachute-fashion, from immense heights, and others which even fly. In these the membranous expansions are greatly increased, the ribs affording the necessary support in the Dragon or Flying Lizard (fig. 15), the anterior and posterior extremities and tail, in the Flying Lemur (fig. 16) and Bat (fig. 17, p. 36).