Animal Locomotion; or, walking, swimming, and flying. James Bell Pettigrew
Fig. 15. Fig. 16.
Fig. 15.—The Red-throated Dragon (Draco hæmatopogon, Gray) shows a large membranous expansion (b b) situated between the anterior (d d) and posterior extremities, and supported by the ribs. The dragon by this arrangement can take extensive leaps with perfect safety.—Original.
Fig. 16.—The Flying Lemur Galeopithecus volans, Shaw. In the flying lemur the membranous expansion (a b) is more extensive than in the Flying Dragon (fig. 15). It is supported by the neck, back, and tail, and by the anterior and posterior extremities. The flying lemur takes enormous leaps; its membranous tunic all but enabling it to fly. The Bat, Phyllorhina gracilis (fig. 17), flies with a very slight increase of surface. The surface exposed by the bat exceeds that displayed by many insects and birds. The wings of the bat are deeply concave, and so resemble the wings of beetles and heavy-bodied short-winged birds. The bones of the arm (r), forearm (d), and hand (n, n, n) of the bat (fig. 17) support the anterior or thick margin and the extremity of the wing, and may not inaptly be compared to the nervures in corresponding positions in the wing of the beetle.—Original.
Fig. 17.—The Bat (Phyllorhina gracilis, Peters). Here the travelling-surfaces (r d e f, a n n n) are enormously increased as compared with that of the land and water animals generally. Compare with figures from 10 to 14, p. 34. r Arm of bat; d forearm of bat; e f, n n n hand of bat.—Original.
Although no lizard is at present known to fly, there can be little doubt that the extinct Pterodactyles (which, according to Professor Huxley, are intermediate between the lizards and crocodiles) were possessed of this power. The bat is interesting as being the only mammal at present endowed with wings sufficiently large to enable it to fly.20 It affords an extreme example of modification for a special purpose—its attenuated body, dwarfed posterior, and greatly elongated anterior extremities, with their enormous fingers and outspreading membranes, completely unfitting it for terrestrial progression. It is instructive as showing that flight may be attained, without the aid of hollow bones and air-sacs, by purely muscular efforts, and by the mere diminution and increase of a continuous membrane.
As the flying lizard, flying lemur, and bat (figs. 15, 16, and 17, pp. 35 and 36), connect terrestrial progression with aërial progression, so the auk, penguin (fig. 46, p. 91), and flying-fish (fig. 51, p. 98), connect progression in the water with progression in the air. The travelling surfaces of these anomalous creatures run the movements peculiar to the three highways of nature into each other, and bridge over, as it were, the gaps which naturally exist between locomotion on the land, in the water, and in the air.
PROGRESSION ON THE LAND.
Walking of the Quadruped, Biped, etc.—As the earth, because of its solidity, will bear any amount of pressure to which it may be subjected, the size, shape, and weight of animals destined to traverse its surface are matters of little or no consequence. As, moreover, the surface trod upon is rigid or unyielding, the extremities of quadrupeds are, as a rule, terminated by small feet. Fig. 18 (contrast with fig. 17).
Fig. 18.—Chillingham Bull (Bos Scoticus). Shows powerful heavy body, and the small extremities adapted for land transit. Also the figure-of-8 movements made by the feet and limbs in walking and running. u, t Curves made by right and left anterior extremities. r, s Curves made by right and left posterior extremities. The right fore and the left hind foot move together to form the waved line (s, u); the left fore and the right hind foot move together to form the waved line (r, t). The curves formed by the anterior (t, u) and posterior (r, s) extremities form ellipses. Compare with fig. 19, p. 39.—Original.
In this there is a double purpose—the limited area presented to the ground affording the animal sufficient support and leverage, and enabling it to disentangle its feet with the utmost facility, it being a condition in rapid terrestrial progression that the points presented to the earth be few in number and limited in extent, as this approximates the feet of animals most closely to the wheel in mechanics, where the surface in contact with the plane of progression is reduced to a minimum. When the surface presented to a dense resisting medium is increased, speed is diminished, as shown in the tardy movements of the mollusc, caterpillar, and slowworm, and also, though not to the same extent, in the serpents, some of which move with considerable celerity. In the gecko and common house-fly, as is well known, the travelling surfaces are furnished with suctorial discs, which enable those creatures to walk, if need be, in an inverted position; and “the tree-frogs (Hyla) have a concave disc at the end of each toe, for climbing and adhering to the bark and leaves of trees. Some toads, on the other hand, are enabled, by peculiar tubercles or projections from the palm or sole, to clamber up old walls.”21 A similar, but more complicated arrangement, is met with in the arms of the cuttle-fish.
The movements of the extremities in land animals vary considerably.
In the kangaroo and jerboa,22 the posterior extremities only are used, the animals advancing per saltum, i.e. by a series of leaps.23
The deer also bounds into the air in its slower movements; in its fastest paces it gallops like the horse, as explained at pp. 40–44. The posterior extremities of the kangaroo are enormously developed as compared with the anterior ones; they are also greatly elongated. The posterior extremities are in excess, likewise, in the horse, rabbit,24 agouti, and guinea pig. As a consequence these animals descend declivities with difficulty. They are best adapted for slightly ascending ground. In the giraffe the anterior extremities are longer and more powerful, comparatively, than the posterior ones, which is just the opposite condition to that found in the kangaroo.
In the giraffe the legs of opposite sides move together and alternate, whereas in most quadrupeds the extremities move diagonally—a remark which holds true also of ourselves in walking and skating, the right leg and left arm advancing together and alternating with the left leg and right arm (fig. 19).
Fig. 19.—Diagram showing the figure-of-8 or double-waved track produced by the alternating of the extremities in man in walking and running; the right leg (r) and left arm (s) advancing simultaneously to form one step; and alternating with the left leg (t) and right arm (u), which likewise advance together to form a second step. The continuous line (r, t) gives the waved track made by the legs; the interrupted line (s, u) that made by the arms. The curves made by the right leg and left arm, and by the left leg and right arm, form ellipses. Compare with fig. 18, p. 37.—Original.
In the hexapod insects, according to Müller, the fore and hind foot of the one side and the middle one of the opposite side move together to make one step, the three corresponding and opposite feet moving together to form the second step. Other and similar combinations are met with in the decapods.
The alternating movements of the extremities are interesting as betokening a certain degree of flexuosity or twisting, either in the trunk or limbs, or partly in the one and partly in the other.
This twisting begets the figure-of-8 movements observed in walking, swimming, and flying. (Compare figs. 6, 7, and 26 x, pp. 28 and 55; figs. 18 and 19, pp. 37 and 39; figs. 32 and 50, pp. 68 and 97; figs. 71 and 73, p. 144; and fig. 81, p. 157.)
Locomotion