The Peripheral T-Cell Lymphomas. Группа авторов

The Peripheral T-Cell Lymphomas - Группа авторов


Скачать книгу
complete response; CTCL, cutaneous T‐cell lymphoma; DOR, duration of response; HDACi, histone deacetylase inhibitor; nr, not reported; NR, not reached; ORR, overall response rate; PFS, progression‐free survival; PTCL, peripheral T‐cell lymphoma.

       Choi, J., Goh, G., Walradt, T. et al. (2015). Genomic landscape of cutaneous T cell lymphoma. Nat Genet 47(9):1011–1019.

       Dunleavy, K., Wilson, W.H., Jaffe, E.S. (2007). Angioimmunoblastic T cell lymphoma: pathobiological insights and clinical implications. Curr Opin Hematol 14(4):348–353.

       Iqbal, J., Wright, G., Wang, C. et al. (2014). Gene expression signatures delineate biological and prognostic subgroups in peripheral T‐cell lymphoma. Blood 123(19):2915–2923.

       Pizzi, M., Margolskee, E., Inghirami, G. (2018). Pathogenesis of peripheral T cell lymphoma. Annu Rev Pathol 13(1):293–320.

       Zain, J.M. (2019). Aggressive T‐cell lymphomas: 2019 updates on diagnosis, risk stratification, and management. Am J Hematol 94 (8):929–946.

      1 1 Dickinson, M., Johnstone, R.W., and Prince, H.M. (2010). Histone deacetylase inhibitors: potential targets responsible for their anti‐cancer effect. Invest New Drugs 28 (Suppl 1): S3–S20.

      2 2 Choi, J., Goh, G., Walradt, T. et al. (2015). Genomic landscape of cutaneous T cell lymphoma. Nat Genet 47 (9): 1011–1019.

      3 3 da Silva Almeida, A.C., Abate, F., Khiabanian, H. et al. (2015). The mutational landscape of cutaneous T cell lymphoma and Sézary syndrome. Nat Genet 47 (12): 1465–1470.

      4 4 Wang, L., Ni, X., Covington, K.R. et al. (2015). Genomic profiling of Sézary syndrome identifies alterations of keyT cell signaling and differentiation genes. Nat Genet 47 (12): 1426–1434.

      5 5 Whittaker, S.J., Demierre, M.F., Kim, E.J. et al. (2010). Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T‐cell lymphoma. J Clin Oncol 28 (29): 4485–4491.

      6 6 Iqbal, J., Wright, G., Wang, C. et al. (2014). Gene expression signatures delineate biological and prognostic subgroups in peripheral T‐cell lymphoma. Blood 123 (19): 2915–2923.

      7 7 Sandell, R.F., Boddicker, R.L., and Feldman, A.L. (2017). Genetic landscape and classification of peripheral T cell lymphomas. Curr Oncol Rep 19 (4): 28.

      8 8 Palomero, T., Couronné, L., Khiabanian, H. et al. (2014). Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. Nat Genet 46 (2): 166–170.

      9 9 Ji, M.M., Huang, Y.H., Huang, J.Y. et al. (2018). Histone modifier gene mutations in peripheral T‐cell lymphoma not otherwise specified. Haematologica 103 (4): 679–687.

      10 10 Shah, U.A., Chung, E.Y., Giricz, O. et al. (2018). North American ATLL has a distinct mutational and transcriptional profile and responds to epigenetic therapies. Blood 132 (14): 1507–1518.

      11 11 de Ruijter, A.J.M., van Gennip, A.H., and Caron, H.N. (2003). Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370 (Pt 3): 737–749.

      12 12 Bolden, J.E., Peart, M.J., and Johnstone, R.W. (2006). Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5 (9): 769–784.

      13 13 Wang, Z., Zang, C., Cui, K. et al. (2009). Genome‐wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138 (5): 1019–1031.

      14 14 Dovey, O.M., Foster, C.T., and Cowley, S.M. (2010). Emphasizing the positive: a role for histone deacetylases in transcriptional activation. Cell Cycle 9 (14): 2700–2701.

      15 15 Bertrand, P. (2010). Inside HDAC with HDAC inhibitors. Eur J Med Chem 45 (6): 2095–2116.

      16 16 Hubbert, C., Guardiola, A., Shao, R. et al. (2002). HDAC6 is a microtubule‐associated deacetylase. Nature 417 (6887): 455–458.

      17 17 Boyault, C., Sadoul, K., Pabion, M., and Khochbin, S. (2007). HDAC6, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination. Oncogene 26 (37): 5468–5476.

      18 18 Vernin, C., Thenoz, M., Pinatel, C. et al. (2014). HTLV‐1 bZIP factor HBZ promotes cell proliferation and genetic instability by activating oncomiRs. Cancer Res 74 (21): 6082.

      19 19 Mondello, P., Tadros, S., Teater, M. et al. (2020). Selective inhibition of HDAC3 targets synthetic vulnerabilities and activates immune surveillance in lymphoma. Cancer Discov 10 (3): 440–459.

      20 20 Archer, S.Y., Meng, S., Shei, A., and Hodin, R.A. (1998). p21(WAF1) is required for butyrate‐mediated growth inhibition of human colon cancer cells. Proc Natl Acad Sci U S A 95 (12): 6791–6796.

      21 21 Richon, V.M., Sandhoff, T.W., Rifkind, R.A., and Marks, P.A. (2000). Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene‐associated histone acetylation. Proc Natl Acad Sci U S A 97 (18): 10014–10019.

      22 22 Sasakawa, Y., Naoe, Y., Noto, T. et al. (2003). Antitumor efficacy of FK228, a novel histone deacetylase inhibitor, depends on the effect on expression of angiogenesis factors. Biochem Pharmacol 66 (6): 897–906.

      23 23 Shao, Y., Gao, Z., Marks, P.A., and Jiang, X. (2004). Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci U S A 101 (52): 18030–10835.

      24 24 Carew, J.S., Nawrocki, S.T., Kahue, C.N. et al. (2007). Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr‐Abl‐mediated drug resistance. Blood 110 (1): 313–322.

      25 25 Dunn, J., McCuaig, R., and Tu, W.J. (2015). Multi‐layered epigenetic mechanisms contribute to transcriptional memory in T lymphocytes. BMC Immunol 16: 27.

      26 26 Antignano, F. and Zaph, C. (2015). Regulation of CD4 T‐cell differentiation and inflammation by repressive histone methylation. Immunol Cell Biol 93 (3): 245–252.

      27 27 Toner, L.E., Vrhovac, R., Smith, E.A. et al. (2006). The schedule‐dependent effects of the novel antifolate pralatrexate and gemcitabine are superior to methotrexate and cytarabine in models of human non‐Hodgkin's lymphoma. Clin Cancer Res 12 (3): 924.

      28 28 Paoluzzi, L., Scotto, L., Marchi, E. et al. (2010). Romidepsin and belinostat synergize the antineoplastic effect of bortezomib in mantle cell lymphoma. Clin Cancer Res 16 (2): 554.

      29 29 Marchi, E., Paoluzzi, L., Scotto, L. et al. (2010). Pralatrexate is synergistic with the proteasome inhibitor Bortezomib in in vitro and in vivo models of T‐cell lymphoid malignancies. Clin Cancer Res 16 (14): 3648.

      30 30 Kalac, M., Scotto, L., Marchi, E. et al. (2011). HDAC inhibitors and decitabine are highly synergistic and associated with unique gene‐expression and epigenetic profiles in models of DLBCL. Blood 118 (20): 5506–5516.

      31 31 Jain, S., Jirau‐Serrano, X., Zullo, K.M. et al. (2015). Preclinical pharmacologic evaluation of pralatrexate and romidepsin confirms potent synergy of the combination in a murine model of human T‐cell lymphoma. Clin Cancer Res 21 (9): 2096.

      32 32 Marchi, E., Zullo, K.M., Amengual, J.E. et al. (2015). The combination of hypomethylating agents and histone deacetylase inhibitors produce marked synergy in preclinical models of T‐cell lymphoma. Br J Haematol 171 (2): 215–226.

      33 33 Zullo, K.M., Guo, Y., Cooke, L. et al. (2015). Aurora a kinase inhibition selectively synergizes with histone deacetylase inhibitor through cytokinesis failure in T‐cell lymphoma. Clin Cancer Res 21 (18): 4097–4109.

      34 34 Odejide, O., Weigert, O., Lane, A.A. et al. (2014). A targeted mutational landscape of angioimmunoblastic T‐cell lymphoma. Blood 123 (9): 1293–1296.

      35 35 Sakata‐Yanagimoto, M., Enami, T., Yoshida, K. et al. (2014). Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet 46 (2): 171–175.

      36 36 Couronné, L., Bastard, C.,


Скачать книгу