The Peripheral T-Cell Lymphomas. Группа авторов
and its excision by TDG in mammalian DNA. Science 333 (6047): 1303–1307.
38 38 Ito, S., Shen, L., Dai, Q. et al. (2011). Tet proteins can convert 5‐methylcytosine to 5‐formylcytosine and 5‐carboxylcytosine. Science 333 (6047): 1300–1303.
39 39 Tahiliani, M., Koh, K.P., Shen, Y. et al. (2009). Conversion of 5‐methylcytosine to 5‐hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324 (5929): 930.
40 40 Quivoron, C., Couronné, L., Della Valle, V. et al. (2011). TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 20 (1): 25–38.
41 41 Muto, H., Sakata‐Yanagimoto, M., Nagae, G. et al. (2014). Reduced TET2 function leads to T‐cell lymphoma with follicular helper T‐cell‐like features in mice. Blood Cancer J 4 (12): e264‐e.
42 42 Lemonnier, F., Couronné, L., Parrens, M. et al. (2012). Recurrent TET2 mutations in peripheral T‐cell lymphomas correlate with TFH‐like features and adverse clinical parameters. Blood 120: 1466–1469.
43 43 Nagata, Y., Kontani, K., Enami, T. et al. (2016). Variegated RHOA mutations in adult T‐cell leukemia/lymphoma. Blood 127 (5): 596–604.
44 44 Gu, T., Lin, X., Cullen, S.M. et al. (2018). DNMT3A and TET1 cooperate to regulate promoter epigenetic landscapes in mouse embryonic stem cells. Genome Biol 19 (1): 88.
45 45 Cairns, R.A., Iqbal, J., Lemonnier, F. et al. (2012). IDH2 mutations are frequent in angioimmunoblastic T‐cell lymphoma. Blood 119 (8): 1901–1903.
46 46 Dawlaty, M.M., Breiling, A., Le, T. et al. (2014). Loss of Tet enzymes compromises proper differentiation of embryonic stem cells. Dev Cell 29 (1): 102–111.
47 47 Williams, K., Christensen, J., Pedersen, M.T. et al. (2011). TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 473 (7347): 343–348.
48 48 Wu, H., D’Alessio, A.C., Ito, S. et al. (2011). Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature 473 (7347): 389–393.
49 49 Lemonnier, F., Poullot, E., Dupuy, A. et al. (2018). Loss of 5‐hydroxymethylcytosine is a frequent event in peripheral T‐cell lymphomas. Haematologica 103 (3): e115.
50 50 Wang, C., McKeithan, T.W., Gong, Q. et al. (2015). IDH2R172 mutations define a unique subgroup of patients with angioimmunoblastic T‐cell lymphoma. Blood 126 (15): 1741–1752.
51 51 de Mel, S., Soon, S.G., Mok, Y. et al. (2018). The genomics and molecular biology of natural killer/T‐cell lymphoma: opportunities for translation. Int J Mol Sci 19 (7): 1931.
52 52 O’Connor, O.A., Falchi, L., Lue, J.K. et al. (2019). Oral 5‐azacytidine and romidepsin exhibit marked activity in patients with PTCL: a multicenter phase 1 study. Blood 134 (17): 1395–1405.
53 53 Yi, S., Sun, J., Qiu, L. et al. (2018). Dual role of EZH2 in cutaneous anaplastic large cell lymphoma: promoting tumor cell survival and regulating tumor microenvironment. J Invest Dermatol 138 (5): 1126–1136.
54 54 Fernandez‐Pol, S., Ma, L., Joshi, R.P., and Arber, D.A. (2019). A survey of somatic mutations in 41 genes in a cohort of T‐cell lymphomas identifies frequent mutations in genes involved in epigenetic modification. Appl Immunohistochem Mol Morphol 27 (6): 416–422.
55 55 Ng, S.Y., Brown, L., Stevenson, K. et al. (2018). RhoA G17V is sufficient to induce autoimmunity and promotes T‐cell lymphomagenesis in mice. Blood 132 (9): 935–947.
56 56 Cortes, J.R., Ambesi‐Impiombato, A., Couronné, L. et al. (2018). RHOA G17V induces T follicular helper cell specification and promotes Lymphomagenesis. Cancer Cell 33 (2): 259–273.e7.
57 57 Yoo, H.Y., Sung, M.K., Lee, S.H. et al. (2014). A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma. Nat Genet 46 (4): 371–375.
58 58 Sakata‐Yanagimoto, M., Nakamoto‐Matsubara, R., Komori, D. et al. (2017). Detection of the circulating tumor DNAs in angioimmunoblastic T‐cell lymphoma. Ann Hematol 96 (9): 1471–1475.
59 59 Pizzi, M., Margolskee, E., and Inghirami, G. (2018). Pathogenesis of peripheral T cell lymphoma. Annu Rev Pathol 13 (1): 293–320.
60 60 Iqbal, J., Amador, C., McKeithan, T.W., and Chan, W.C. (2019). Molecular and genomic landscape of peripheral T‐cell lymphoma. In: T‐Cell and NK‐Cell Lymphomas: From Biology to Novel Therapies (eds. C. Querfeld, J. Zain and S.T. Rosen), 31–68. Cham: Springer International Publishing.
61 61 Dunleavy, K., Wilson, W.H., and Jaffe, E.S. (2007). Angioimmunoblastic T cell lymphoma: pathobiological insights and clinical implications. Curr Opin Hematol 14 (4): 348–353.
62 62 Gaulard, P. and de Leval, L. (2011). Follicular helper T cells: implications in neoplastic hematopathology. Semin Diagn Pathol 28 (3): 202–213.
63 63 Zhou, Y., Attygalle, A.D., Chuang, S.S. et al. (2007). Angioimmunoblastic T‐cell lymphoma: histological progression associates with EBV and HHV6B viral load. Br J Haematol 138 (1): 44–53.
64 64 Nelson, M., Horsman, D.E., Weisenburger, D.D. et al. (2008). Cytogenetic abnormalities and clinical correlations in peripheral T‐cell lymphoma. Br J Haematol 141 (4): 461–469.
65 65 Fernández‐Piqueras, J. (2016). New mutations for nodal lymphomas of TFH origin. Blood 128 (11): 1446–1447.
66 66 Yoo, H.Y., Kim, P., Kim, W.S. et al. (2016). Frequent CTLA4‐CD28 gene fusion in diverse types of T‐cell lymphoma. Haematologica 101 (6): 757–763.
67 67 Attygalle, A., Feldman, A., and Dogan, A. (2013). ITK/SYK translocation in angioimmunoblastic T‐cell lymphoma. Am J Surg Pathol 37: 1456–1457.
68 68 Zain, J.M. (2019). Aggressive T‐cell lymphomas: 2019 updates on diagnosis, risk stratification, and management. Am J Hematol 94 (8): 929–946.
69 69 Yabe, M., Dogan, A., Horwitz, S.M., and Moskowitz, A.J. (2019). Angioimmunoblastic T‐cell lymphoma. In: T‐Cell and NK‐Cell Lymphomas: From Biology to Novel Therapies (eds. C. Querfeld, J. Zain and S.T. Rosen), 99–126. Cham: Springer International Publishing.
70 70 O’Connor, O.A., Horwitz, S., Masszi, T. et al. (2015). Belinostat in patients with relapsed or refractory peripheral T‐cell lymphoma: results of the pivotal phase II BELIEF (CLN‐19) study. J Clin Oncol 33 (23): 2492–2499.
71 71 Coiffier, B., Pro, B., Prince, H.M. et al. (2014). Romidepsin for the treatment of relapsed/refractory peripheral T‐cell lymphoma: pivotal study update demonstrates durable responses. J Hematol Oncol 7: –11.
72 72 Delarue, R., Dupuis, J., Sujobert, P. et al. (2016). Treatment with hypomethylating agent 5‐azacytidine induces sustained response in angioimmunoblastic T cell lymphomas. Blood 128 (22): 4164.
73 73 Savage, K.J., Harris, N.L., Vose, J.M. et al. (2008). ALK− anaplastic large‐cell lymphoma is clinically and immunophenotypically different from both ALK+ ALCL and peripheral T‐cell lymphoma, not otherwise specified: report from the international peripheral T‐cell lymphoma project. Blood 111 (12): 5496–5504.
74 74 Shustov, A. and Soma, L. Anaplastic large cell lymphoma: contemporary concepts and optimal management. In: T‐Cell and NK‐Cell Lymphomas: From Biology to Novel Therapies (eds. C. Querfeld, J. Zain and S.T. Rosen), 127–144. Cham: Springer International Publishing.
75 75 Fujikawa, D., Nakagawa, S., Hori, M. et al. (2016). Polycomb‐dependent epigenetic landscape in adult T‐cell leukemia. Blood 127 (14): 1790–1802.
76 76 Swerdlow, S.H., Campo, E., Pileri, S.A. et al. (2016). The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 127 (20): 2375–2390.
77 77 Pfister, S.X., Ahrabi, S., Zalmas, L.P. et al. (2014). SETD2‐dependent histone H3K36 trimethylation is required for homologous recombination repair and genome stability. Cell Rep 7 (6): 2006–2018.
78 78 Küçük, C., Jiang, B., Hu, X. et al. (2015). Activating mutations of STAT5B and STAT3 in lymphomas derived from γδ‐T or NK