The Peripheral T-Cell Lymphomas. Группа авторов
Woollard, W.J., Pullabhatla, V., Lorenc, A. et al. (2016). Candidate driver genes involved in genome maintenance and DNA repair in Sézary syndrome. Blood 127 (26): 3387–3397.
81 81 van Doorn, R., Slieker, R.C., Boonk, S.E. et al. (2016). Epigenomic analysis of Sézary syndrome defines patterns of aberrant DNA methylation and identifies diagnostic markers. J Invest Dermatol 136 (9): 1876–1884.
82 82 Cancer Genome Atlas Research Network, Weinstein, J.N., Collisson, E.A. et al. (2013). The Cancer Genome Atlas Pan‐Cancer analysis project. Nat Genet 45 (10): 1113–1120.
83 83 Chihara, D. and Oki, Y. NK‐cell lymphomas. In: T‐Cell and NK‐Cell Lymphomas: From Biology to Novel Therapies (eds. C. Querfeld, J. Zain and S.T. Rosen), 163–184. Cham: Springer International Publishing.
84 84 Kiel, M.J., Sahasrabuddhe, A.A., Rolland, D.C.M. et al. (2015). Genomic analyses reveal recurrent mutations in epigenetic modifiers and the JAK–STAT pathway in Sézary syndrome. Nat Commun 6 (1): 8470.
85 85 Ungewickell, A., Bhaduri, A., Rios, E. et al. (2015). Genomic analysis of mycosis fungoides and Sézary syndrome identifies recurrent alterations in TNFR2. Nat Genet 47 (9): 1056–1060.
86 86 Michel, L., Jean‐Louis, F., and Begue, E. (2013). Use of PLS3, Twist, CD158k/KIR3DL2, and NKp46 gene expression combination for reliable Sézary syndrome diagnosis. Blood 121 (8): 1477–1478.
87 87 Jones, C.L., Ferreira, S., McKenzie, R.C.T. et al. (2012). Regulation of T‐plastin expression by promoter hypomethylation in primary cutaneous T‐cell lymphoma. J Invest Dermatol 132 (8): 2042–2049.
88 88 Coiffier, B., Pro, B., Prince, H.M. et al. (2012). Results from a pivotal, open‐label, phase II study of romidepsin in relapsed or refractory peripheral T‐cell lymphoma after prior systemic therapy. J Clin Oncol 30 (6): 631–636.
89 89 Olsen, E.A., Kim, Y.H., Kuzel, T.M. et al. (2007). Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T‐cell lymphoma. J Clin Oncol 25 (21): 3109–3115.
90 90 Shi, Y., Dong, M., Hong, X. et al. (2015). Results from a multicenter, open‐label, pivotal phase II study of chidamide in relapsed or refractory peripheral T‐cell lymphoma. Ann Oncol 26 (8): 1766–1771.
91 91 O’Connor, O.A., Pro, B., Pinter‐Brown, L. et al. (2011). Pralatrexate in patients with relapsed or refractory peripheral T‐cell lymphoma: results from the pivotal PROPEL study. J Clin Oncol 29 (9): 1182–1189.
92 92 Clozel, T., Yang, S., Elstrom, R.L. et al. (2013). Mechanism‐based epigenetic chemosensitization therapy of diffuse large B‐cell lymphoma. Cancer Discov 3 (9): 1002–1019.
93 93 Uenogawa, K., Hatta, Y., Arima, N. et al. (2011). Azacitidine induces demethylation of p16INK4a and inhibits growth in adult T‐cell leukemia/lymphoma. Int J Mol Med 28 (5): 835–839.
94 94 Lemonnier, F., Dupuis, J., Sujobert, P. et al. (2018). Treatment with 5‐azacytidine induces a sustained response in patients with angioimmunoblastic T‐cell lymphoma. Blood 132 (21): 2305–2309.
95 95 Gregory, G.P., Dickinson, M., Yannakou, C.K. et al. (2019). Rapid and durable complete remission of refractory AITL with azacitidine treatment in absence of TET2 mutation or concurrent MDS. Hemasphere 3 (2): e187.
96 96 Figueroa, M.E., Abdel‐Wahab, O., Lu, C. et al. (2010). Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18 (6): 553–567.
97 97 Lemonnier, F., Cairns, R.A., Inoue, S. et al. (2016). The IDH2 R172K mutation associated with angioimmunoblastic T‐cell lymphoma produces 2HG in T cells and impacts lymphoid development. Proc Natl Acad Sci U S A 113 (52): 15084–15089.
98 98 Nguyen, T.B., Sakata‐Yanagimoto, M., Asabe, Y. et al. (2017). Identification of cell‐type‐specific mutations in nodal T‐cell lymphomas. Blood Cancer J 7 (1): e516‐e.
99 99 Stein, E.M., DiNardo, C.D., Pollyea, D.A. et al. (2017). Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood 130 (6): 722–731.
100 100 DiNardo, C.D., Stein, E.M., de Botton, S. et al. (2018). Durable remissions with Ivosidenib in IDH1‐mutated relapsed or refractory AML. N Engl J Med 378 (25): 2386–2398.
101 101 Yamaguchi, H. and Hung, M.‐C. (2014). Regulation and role of EZH2 in cancer. Cancer Res. Treat. 46 (3): 209–222.
102 102 Béguelin, W., Rivas, M.A., Calvo Fernández, M.T. et al. (2017). EZH2 enables germinal Centre formation through epigenetic silencing of CDKN1A and an Rb‐E2F1 feedback loop. Nat Commun 8 (1): 877.
103 103 Béguelin, W., Popovic, R., Teater, M. et al. (2013). EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell 23 (5): 677–692.
104 104 Caganova, M., Carrisi, C., Varano, G. et al. (2013). Germinal center dysregulation by histone methyltransferase EZH2 promotes lymphomagenesis. J Clin Invest 123 (12): 5009–5022.
105 105 Morin, R.D., Johnson, N.A., Severson, T.M. et al. (2010). Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B‐cell lymphomas of germinal‐center origin. Nat Genet 42 (2): 181–185.
106 106 Bödör, C., Grossmann, V., Popov, N. et al. (2013). EZH2 mutations are frequent and represent an early event in follicular lymphoma. Blood 122 (18): 3165–3168.
107 107 Sneeringer, C.J., Scott, M.P., Kuntz, K.W. et al. (2010). Coordinated activities of wild‐type plus mutant EZH2 drive tumor‐associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B‐cell lymphomas. Proc Natl Acad Sci U S A 107 (49): 20980.
108 108 Italiano, A., Soria, J.C., Toulmonde, M. et al. (2018). Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B‐cell non‐Hodgkin lymphoma and advanced solid tumours: a first‐in‐human, open‐label, phase 1 study. Lancet Oncol 19 (5): 649–659.
109 109 Yap, T.A., Johnson, P.W.M., Winter, J. et al. (2016). A phase I, open‐label study of GSK2816126, an enhancer of zeste homolog 2 (EZH2) inhibitor, in patients with relapsed/refractory diffuse large B‐cell lymphoma (DLBCL), transformed follicular lymphoma (tFL), other non‐Hodgkin's lymphomas (NHL), multiple myeloma (MM) and solid tumor. J Clin Oncol 34 (15 Suppl): TPS2595.
110 110 Maruyama, D., Tobinai, K., Makita, S. et al. (2017). First‐in‐human study of the EZH1/2 dual inhibitor DS‐3201b in patients with relapsed or refractory non‐Hodgkin lymphomas: preliminary results. Blood 130 (Suppl 1): 4070.
111 111 Ntziachristos, P., Tsirigos, A., Vlierberghe, P.V. et al. (2012). Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia. Nat Med 18 (2): 298–302.
112 112 Zhang, J., Ding, L., Holmfeldt, L. et al. (2012). The genetic basis of early T‐cell precursor acute lymphoblastic leukaemia. Nature 481 (7380): 157–163.
113 113 Danis, E., Yamauchi, T., Echanique, K. et al. (2016). Ezh2 controls an early hematopoietic program and growth and survival signaling in early T cell precursor acute lymphoblastic leukemia. Cell Rep 14 (8): 1953–1965.
114 114 Shi, M., Shahsafaei, A., and Liu, C. (2015). Enhancer of zeste homolog 2 is widely expressed in T‐cell neoplasms, is associated with high proliferation rate and correlates with MYC and pSTAT3 expression in a subset of cases. Leuk Lymphoma 56 (7): 2087–2091.
115 115 Yamagishi, M., Hori, M., Fujikawa, D. et al. (2016). Development and molecular analysis of synthetic lethality by targeting EZH1 and EZH2 in non‐Hodgkin lymphomas. Blood 128 (22): 462.
116 116 Yamagishi, M., Fujikawa, D., Honma, D. et al. (2015). Polycomb‐dependent epigenetic landscape in Adult T Cell Leukemia (ATL); providing proof of concept for targeting EZH1/2 to selectively eliminate the HTLV‐1 infected population. Blood 126 (23): 572.
117 117 Honma, D., Kanno, O., Watanabe, J. et al. (2017). Novel orally bioavailable EZH1/2 dual inhibitors with greater antitumor efficacy than an EZH2 selective inhibitor. Cancer Sci 108 (10): 2069–2078.
118 118