Polymer Nanocomposite Materials. Группа авторов

Polymer Nanocomposite Materials - Группа авторов


Скачать книгу
nanocomposites. Adv. Mater. 16: 1005–1009.

      10 10 Molapo, K.M., Ndangili, P.M., Ajayi, R.F. et al. (2012). Electronics of conjugated polymers (I): polyaniline. Int. J. Electrochem. Sci.7: 11859–11875.

      11 11 Chiu, H.-T., Chiang, T.-Y., Chang, C.-Y., and Kuo, M.-T. (2011). Carbon black/polypyrrole/nitrile rubber conducting composites: synergistic properties and compounding conductivity effect. E-Polymers 11: 037.

      12 12 Choi, S., Han, S.I., Kim, D. et al. (2019). High-performance stretchable conductive nanocomposites: materials, processes, and device applications. Chem. Soc. Rev. 48: 1566–1595.

      13 13 Chen, J., Cui, X., Sui, K. et al. (2017). Balance the electrical properties and mechanical properties of carbon black filled immiscible polymer blends with a double percolation structure. Compos. Sci. Technol. 140: 99–105.

      14 14 Tung, T.T., Karunagaran, R., Tran, D.N. et al. (2016). Engineering of graphene/epoxy nanocomposites with improved distribution of graphene nanosheets for advanced piezo-resistive mechanical sensing. J. Mater. Chem. C 4: 3422–3430.

      15 15 Pang, H., Xu, L., Yan, D.-X., and Li, Z.-M. (2014). Conductive polymer composites with segregated structures. Prog. Polym. Sci. 39: 1908–1933.

      16 16 Jeon, K.S., Nirmala, R., Navamathavan, R., and Kim, H.Y. (2013). Mechanical behavior of electrospun nylon66 fibers reinforced with pristine and treated multi-walled carbon nanotube fillers. Ceram. Int. 39: 8199–8206.

      17 17 Chen, G.-X., Li, Y., and Shimizu, H. (2007). Ultrahigh-shear processing for the preparation of polymer/carbon nanotube composites. Carbon 45: 2334–2340.

      18 18 Ren, F., Zhu, G., Ren, P. et al. (2014). In situ polymerization of graphene oxide and cyanate ester–epoxy with enhanced mechanical and thermal properties. Appl. Surf. Sci. 316: 549–557.

      19 19 Wang, L.T., Chen, Q., Hong, R.Y., and Kumar, M.R. (2015). Preparation of oleic acid modified multi-walled carbon nanotubes for polystyrene matrix and enhanced properties by solution blending. J. Mater. Sci. - Mater. Electron. 26: 8667–8675.

      20 20 Mazinani, S., Ajji, A., and Dubois, C. (2009). Morphology, structure and properties of conductive PS/CNT nanocomposite electrospun mat. Polymer 50: 3329–3342.

      21 21 Balogun, Y.A. and Buchanan, R.C. (2010). Enhanced percolative properties from partial solubility dispersion of filler phase in conducting polymer composites (CPCs). Compos. Sci. Technol. 70: 892–900.

      22 22 Dubson, M.A. and Garland, J.C. (1985). Measurement of the conductivity exponent in two-dimensional percolating networks: square lattice versus random-void continuum. Phys. Rev. B 32: 7621–7623.

      23 23 Du, J., Zhao, L., Zeng, Y. et al. (2011). Comparison of electrical properties between multi-walled carbon nanotube and graphene nanosheet/high density polyethylene composites with a segregated network structure. Carbon 49: 1094–1100.

      24 24 Sumfleth, J., Buschhorn, S.T., and Schulte, K. (2011). Comparison of rheological and electrical percolation phenomena in carbon black and carbon nanotube filled epoxy polymers. J. Mater. Sci. 46: 659–669.

      25 25 Kuilla, T., Bhadra, S., Yao, D. et al. (2010). Recent advances in graphene based polymer composites. Prog. Polym. Sci. 35: 1350–1375.

      26 26 Ameli, A., Kazemi, Y., Wang, S. et al. (2017). Process-microstructure-electrical conductivity relationships in injection-molded polypropylene/carbon nanotube nanocomposite foams. Compos. Part A: Appl. Sci. Manuf. 96: 28–36.

      27 27 Deng, H., Zhang, R., Bilotti, E. et al. (2009). Conductive polymer tape containing highly oriented carbon nanofillers. J. Appl. Polym. Sci. 113: 742–751.

      28 28 Zhao, P., Luo, Y., Yang, J. et al. (2014). Electrically conductive graphene-filled polymer composites with well organized three-dimensional microstructure. Mater. Lett. 121: 74–77.

      29 29 Pang, H., Yan, D.-X., Bao, Y. et al. (2012). Super-tough conducting carbon nanotube/ultrahigh-molecular-weight polyethylene composites with segregated and double-percolated structure. J. Mater. Chem. 22: 23568–23575.

      30 30 Deng, H., Lin, L., Ji, M. et al. (2014). Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Prog. Polym. Sci. 39: 627–655.

      31 31 Nakayama, Y., Takeda, E., Shigeishi, T. et al. (2011). Melt-mixing by novel pitched-tip kneading disks in a co-rotating twin-screw extruder. Chem. Eng. Sci. 66: 103–110.

      32 32 Deng, L., Xu, C., Ding, S. et al. (2019). Processing a supertoughened polylactide ternary blend with high heat deflection temperature by melt blending with a high screw rotation speed. Ind. Eng. Chem. Res. 58: 10618–10628.

      33 33 Wu, H.-Y., Zhang, Y.-P., Jia, L.-C. et al. (2018). Injection molded segregated carbon nanotube/polypropylene composite for efficient electromagnetic interference shielding. Ind. Eng. Chem. Res. 57: 12378–12385.

      34 34 Qu, Y., Dai, K., Zhao, J. et al. (2014). The strain-sensing behaviors of carbon black/polypropylene and carbon nanotubes/polypropylene conductive composites prepared by the vacuum-assisted hot compression. Colloid. Polym. Sci. 292: 945–951.

      35 35 Strååt, M., Rigdahl, M., and Hagström, B. (2012). Conducting bicomponent fibers obtained by melt spinning of PA6 and polyolefins containing high amounts of carbonaceous fillers. J. Appl. Polym. Sci. 123: 936–943.

      36 36 Devaux, E., Koncar, V., Kim, B. et al. (2016). Processing and characterization of conductive yarns by coating or bulk treatment for smart textile applications. Trans. Inst. Meas. Control 29: 355–376.

      37 37 Kim, J.Y. (2009). The effect of carbon nanotube on the physical properties of poly(butylene terephthalate) nanocomposite by simple melt blending. J. Appl. Polym. Sci. 112: 2589–2600.

      38 38 Shen, B., Zhai, W., Chen, C. et al. (2011). Melt blending in situ enhances the interaction between polystyrene and graphene through π–π stacking. ACS Appl. Mater. Interfaces 3: 3103–3109.

      39 39 Pan, Y., Li, L., Chan, S.H., and Zhao, J. (2010). Correlation between dispersion state and electrical conductivity of MWCNTs/PP composites prepared by melt blending. Composites Part A 41: 419–426.

      40 40 Jiang, S., Gui, Z., Bao, C. et al. (2013). Preparation of functionalized graphene by simultaneous reduction and surface modification and its polymethyl methacrylate composites through latex technology and melt blending. Chem. Eng. J. 226: 326–335.

      41 41 You, F., Wang, D., Cao, J. et al. (2014). In situ thermal reduction of graphene oxide in a styrene-ethylene/butylene-styrene triblock copolymer via melt blending. Polym. Int. 63: 93–99.

      42 42 Maiti, S., Suin, S., Shrivastava, N.K., and Khatua, B.B. (2013). Low percolation threshold in polycarbonate/multiwalled carbon nanotubes nanocomposites through melt blending with poly(butylene terephthalate). J. Appl. Polym. Sci. 130: 543–553.

      43 43 Sharma, M., Sharma, S., Abraham, J. et al. (2014). Flexible EMI shielding materials derived by melt blending PVDF and ionic liquid modified MWNTs. Mater. Res. Express 1: 035003.

      44 44 Soroudi, A. and Skrifvars, M. (2010). Melt blending of carbon nanotubes/polyaniline/polypropylene compounds and their melt spinning to conductive fibres. Synth. Met. 160: 1143–1147.

      45 45 Yu, F., Deng, H., Zhang, Q. et al. (2013). Anisotropic multilayer conductive networks in carbon nanotubes filled polyethylene/polypropylene blends obtained through high speed thin wall injection molding. Polymer 54: 6425–6436.

      46 46 Fan, Z. and Advani, S.G. (2007). Rheology of multiwall carbon nanotube suspensions. J. Rheol. 51: 585–604.

      47 47 Pan, H., Zhang, Y., Hang, Y. et al. (2012). Significantly reinforced composite fibers electrospun from silk fibroin/carbon nanotube aqueous solutions. Biomacromolecules 13: 2859–2867.

      48 48 Li, T., Zhao, G., and Wang, G. (2018). Effect of preparation methods on electrical and electromagnetic interference shielding properties of PMMA/MWCNT nanocomposites. Polym. Compos. 40: E1786–E1800.

      49 49 Ramanujam, B.T.S. and Radhakrishnan, S. (2014). Solution-blended polyethersulfone–graphite hybrid composites. J. Thermoplast.


Скачать книгу