Polymer Nanocomposite Materials. Группа авторов

Polymer Nanocomposite Materials - Группа авторов


Скачать книгу
Electrically conductive polymer composites for smart flexible strain sensors: a critical review. J. Mater. Chem. C 6: 12121–12141.

      91 91 Ma, M., Zhu, Z., Wu, B. et al. (2017). Preparation of highly conductive composites with segregated structure based on polyamide-6 and reduced graphene oxide. Mater. Lett. 190: 71–74.

      92 92 Cui, J. and Zhou, S. (2018). Facile fabrication of highly conductive polystyrene/nanocarbon composites with robust interconnected network via electrostatic attraction strategy. J. Mater. Chem. C 6: 550–557.

      93 93 Xie, L. and Zhu, Y. (2018). Tune the phase morphology to design conductive polymer composites: a review. Polym. Compos. 39: 2985–2996.

      94 94 Tang, C., Long, G., Hu, X. et al. (2014). Conductive polymer nanocomposites with hierarchical multi-scale structures via self-assembly of carbon-nanotubes on graphene on polymer-microspheres. Nanoscale 6: 7877–7888.

      95 95 Wu, C., Huang, X., Wang, G. et al. (2013). Highly conductive nanocomposites with three-dimensional, compactly interconnected graphene networks via a self-assembly process. Adv. Funct. Mater. 23: 506–513.

      96 96 Pang, H., Bao, Y., Xu, L. et al. (2013). Double-segregated carbon nanotube–polymer conductive composites as candidates for liquid sensing materials. J. Mater. Chem. A 1: 4177–4181.

      97 97 Pang, H., Bao, Y., Yang, S.-G. et al. (2014). Preparation and properties of carbon nanotube/binary-polymer composites with a double-segregated structure. J. Appl. Polym. Sci. 131: 39789.

      98 98 Luo, W., Charara, M., Saha, M.C., and Liu, Y. (2019). Fabrication and characterization of porous CNF/PDMS nanocomposites for sensing applications. Appl. Nanosci. 9: 1309–1317.

      99 99 Cho, E.-C., Chang-Jian, C.-W., Hsiao, Y.-S. et al. (2016). Three-dimensional carbon nanotube based polymer composites for thermal management. Composites Part A 90: 678–686.

      100 100 Zhao, S., Yan, Y., Gao, A. et al. (2018). Flexible polydimethylsilane nanocomposites enhanced with a three-dimensional graphene/carbon nanotube bicontinuous framework for high-performance electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10: 26723–26732.

      101 101 Hu, X., Tian, M., Xu, T. et al. (2020). Multiscale disordered porous fibers for self-sensing and self-cooling integrated smart sportswear. ACS Nano 14: 559–567.

      102 102 Zhang, S., Liu, H., Yang, S. et al. (2019). Ultrasensitive and highly compressible piezoresistive sensor based on polyurethane sponge coated with a cracked cellulose nanofibril/silver nanowire layer. ACS Appl. Mater. Interfaces 11: 10922–10932.

      103 103 Mates, J.E., Bayer, I.S., Palumbo, J.M. et al. (2015). Extremely stretchable and conductive water-repellent coatings for low-cost ultra-flexible electronics. Nat. Commun. 6: 8874.

      104 104 Gao, J., Wu, L., Guo, Z. et al. (2019). A hierarchical carbon nanotube/SiO2 nanoparticle network induced superhydrophobic and conductive coating for wearable strain sensors with superior sensitivity and ultra-low detection limit. J. Mater. Chem. C 7: 4199–4209.

      105 105 Ren, M., Zhou, Y., Wang, Y. et al. (2019). Highly stretchable and durable strain sensor based on carbon nanotubes decorated thermoplastic polyurethane fibrous network with aligned wave-like structure. Chem. Eng. J. 360: 762–777.

      106 106 Shi, H., Shi, D., Yin, L. et al. (2014). Ultrasonication assisted preparation of carbonaceous nanoparticles modified polyurethane foam with good conductivity and high oil absorption properties. Nanoscale 6: 13748–13753.

      107 107 Park, J.J., Hyun, W.J., Mun, S.C. et al. (2015). Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring. ACS Appl. Mater. Interfaces 7: 6317–6324.

      108 108 Hu, L., Pasta, M., Mantia, F.L. et al. (2010). Stretchable, porous, and conductive energy textiles. Nano Lett. 10: 708–714.

      109 109 Gao, J., Luo, J., Wang, L. et al. (2019). Flexible, superhydrophobic and highly conductive composite based on non-woven polypropylene fabric for electromagnetic interference shielding. Chem. Eng. J. 364: 493–502.

      110 110 Wang, L., Wang, H., Huang, X.-W. et al. (2018). Superhydrophobic and superelastic conductive rubber composite for wearable strain sensors with ultrahigh sensitivity and excellent anti-corrosion property. J. Mater. Chem. A 6: 24523–24533.

      111 111 Lee, J., Shin, S., Lee, S. et al. (2018). Highly sensitive multifilament fiber strain sensors with ultrabroad sensing range for textile electronics. ACS Nano 12: 4259–4268.

      112 112 Wang, L., Chen, Y., Lin, L. et al. (2019). Highly stretchable, anti-corrosive and wearable strain sensors based on the PDMS/CNTs decorated elastomer nanofiber composite. Chem. Eng. J. 362: 89–98.

      113 113 Lin, L., Wang, L., Li, B. et al. (2020). Dual conductive network enabled superhydrophobic and high performance strain sensors with outstanding electro-thermal performance and extremely high gauge factors. Chem. Eng. J. 385: 123391.

      114 114 Pu, J.-H., Zhao, X., Zha, X.-J. et al. (2019). Multilayer structured AgNW/WPU-MXene fiber strain sensors with ultrahigh sensitivity and a wide operating range for wearable monitoring and healthcare. J. Mater. Chem. A 7: 15913–15923.

      115 115 Zhai, W., Xia, Q., Zhou, K. et al. (2019). Multifunctional flexible carbon black/polydimethylsiloxane piezoresistive sensor with ultrahigh linear range, excellent durability and oil/water separation capability. Chem. Eng. J. 372: 373–382.

      116 116 Gao, J., Wang, H., Huang, X. et al. (2018). A super-hydrophobic and electrically conductive nanofibrous membrane for a chemical vapor sensor. J. Mater. Chem. A 6: 10036–10047.

      117 117 Flint, E.B. and Suslick, K.S. (1991). The temperature of cavitation. Science 253: 1397–1399.

      118 118 Gao, J., Hu, M., and Li, R.K.Y. (2012). Ultrasonication induced adsorption of carbon nanotubes onto electrospun nanofibers with improved thermal and electrical performances. J. Mater. Chem. 22: 10867–10872.

      119 119 Trung, T.Q. and Lee, N.E. (2016). Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv. Mater. 28: 4338–4372.

      120 120 Rinaldi, A., Tamburrano, A., Fortunato, M. et al. (2016). Highly sensitive pressure sensor based on a PDMS foam coated with graphene nanoplatelets. Sensors 16: 2148.

      121 121 Yang, H., Yao, X., Yuan, L. et al. (2019). Strain-sensitive electrical conductivity of carbon nanotube-graphene-filled rubber composites under cyclic loading. Nanoscale 11: 578–586.

      122 122 Cao, X., Lan, Y., Wei, Y. et al. (2015). Tunable resistivity–temperature characteristics of an electrically conductive multi-walled carbon nanotubes/epoxy composite. Mater. Lett. 159: 276–279.

      123 123 Wang, W., Wang, C., Yue, X. et al. (2019). Raman spectroscopy and resistance-temperature studies of functionalized multiwalled carbon nanotubes/epoxy resin composite film. Microelectron. Eng. 214: 50–54.

      124 124 Li, K., Dai, K., Xu, X. et al. (2013). Organic vapor sensing behaviors of carbon black/poly(lactic acid) conductive biopolymer composite. Colloid. Polym. Sci. 291: 2871–2878.

      125 125 Li, J.R., Xu, J.R., Zhang, M.Q., and Rong, M.Z. (2003). Carbon black/polystyrene composites as candidates for gas sensing materials. Carbon 41: 2353–2360.

      126 126 Wang, L., Luo, J., Chen, Y. et al. (2019). Fluorine-free superhydrophobic and conductive rubber composite with outstanding deicing performance for highly sensitive and stretchable strain sensors. ACS Appl. Mater. Interfaces 11: 17774–17783.

      127 127 Boland, C.S., Khan, U., Backes, C. et al. (2014). Sensitive, high-strain, high-rate bodily motion sensors based on graphene–rubber composites. ACS Nano 8: 8819–8830.

      128 128 Zhang, L., He, J., Liao, Y. et al. (2019). A self-protective, reproducible textile sensor with high performance towards human–machine interactions. J. Mater. Chem. A 7: 26631–26640.

      129 129 Gao, J., Wang, L., Guo, Z. et al. (2020). Flexible, superhydrophobic, and electrically conductive polymer nanofiber composite for multifunctional sensing applications. Chem. Eng. J. 381: 122778.

      130 130 Li, L., Bai, Y., Li, L. et al. (2017).


Скачать книгу