Polymer Nanocomposite Materials. Группа авторов

Polymer Nanocomposite Materials - Группа авторов


Скачать книгу
Sandwich-structured composite fibrous membranes with tunable porous structure for waterproof, breathable, and oil–water separation applications. J. Colloid Interface Sci. 514: 386–395.

      51 51 Kim, Y., Le, T.-H., Kim, S. et al. (2018). Single-walled carbon nanotube-in-binary-polymer nanofiber structures and their use as carbon precursors for electrochemical applications. J. Phys. Chem. C 122: 4189–4198.

      52 52 Zhang, S., Li, D., Kang, J. et al. (2018). Electrospinning preparation of a graphene oxide nanohybrid proton-exchange membrane for fuel cells. J. Appl. Polym. Sci. 135: 46443.

      53 53 Jin, L., Hu, B., Kuddannaya, S. et al. (2018). A three-dimensional carbon nanotube–nanofiber composite foam for selective adsorption of oils and organic liquids. Polym. Compos. 39: E271–E277.

      54 54 Wang, K., Gu, M., Wang, J.-J. et al. (2012). Functionalized carbon nanotube/polyacrylonitrile composite nanofibers: fabrication and properties. Polym. Adv. Technol. 23: 262–271.

      55 55 Dhakshnamoorthy, M., Ramakrishnan, S., Vikram, S. et al. (2014). In-situ preparation and characterization of acid functionalized single walled carbon nanotubes with polyimide nanofibers. J. Nanosci. Nanotechnol. 14: 5011–5018.

      56 56 Bekyarova, E., Itkis, M.E., Cabrera, N. et al. (2005). Electronic properties of single-walled carbon nanotube networks. J. Am. Chem. Soc. 127: 5990–5995.

      57 57 Kim, J.H., Kataoka, M., Jung, Y.C. et al. (2013). Mechanically tough, electrically conductive polyethylene oxide nanofiber web incorporating DNA-wrapped double-walled carbon nanotubes. ACS Appl. Mater. Interfaces 5: 4150–4154.

      58 58 Hirsch, A. (2002). Functionalization of single-walled carbon nanotubes. Angew. Chem. Int. Ed. 41: 1853–1859.

      59 59 Li, Y., Zhou, B., Zheng, G. et al. (2018). Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing. J. Mater. Chem. C 6: 2258–2269.

      60 60 Ntim, S.A., Sae-Khow, O., Witzmann, F.A., and Mitra, S. (2011). Effects of polymer wrapping and covalent functionalization on the stability of MWCNT in aqueous dispersions. J. Colloid Interface Sci. 355: 383–388.

      61 61 Khazaee, M., Ye, D., Majumder, A. et al. (2016). Non-covalent modified multi-walled carbon nanotubes: dispersion capabilities and interactions with bacteria. Biomed. Phys. Eng. Express 2: 055008.

      62 62 Amirilargani, M., Tofighy, M.A., Mohammadi, T., and Sadatnia, B. (2014). Novel poly(vinyl alcohol)/multiwalled carbon nanotube nanocomposite membranes for pervaporation dehydration of isopropanol: poly(sodium-4-styrenesulfonate) as a functionalization agent. Ind. Eng. Chem. Res. 53: 12819–12829.

      63 63 Lee, J.Y., Kang, T.H., Choi, J.H. et al. (2018). Improved electrical conductivity of poly(ethylene oxide) nanofibers using multi-walled carbon nanotubes. AIP Adv. 8: 035024.

      64 64 Tu, X., Hight Walker, A.R., Khripin, C.Y., and Zheng, M. (2011). Evolution of DNA sequences toward recognition of metallic armchair carbon nanotubes. J. Am. Chem. Soc. 133: 12998–13001.

      65 65 Kim, J.H., Kataoka, M., Fujisawa, K. et al. (2011). Unusually high dispersion of nitrogen-doped carbon nanotubes in DNA solution. J. Phys. Chem. B 115: 14295–14300.

      66 66 Imai, Y., Fueki, T., Inoue, T., and Kakimoto, M.A. (1998). A new direct preparation of electroconductive polyimide/carbon black composite via polycondensation of nylon–salt-type monomer/carbon black mixture. J. Polym. Sci., Part A: Polym. Chem. 36: 1031–1034.

      67 67 Li, Y., Pan, D., Chen, S. et al. (2013). In situ polymerization and mechanical, thermal properties of polyurethane/graphene oxide/epoxy nanocomposites. Mater. Des. 47: 850–856.

      68 68 Li, J., Zhang, G., Deng, L. et al. (2014). In situ polymerization of mechanically reinforced, thermally healable graphene oxide/polyurethane composites based on Diels–Alder chemistry. J. Mater. Chem. A 2: 20642–20649.

      69 69 Xu, Z. and Gao, C. (2010). In situ polymerization approach to graphene-reinforced nylon-6 composites. Macromolecules 43: 6716–6723.

      70 70 Zeng, H., Gao, C., Wang, Y. et al. (2006). In situ polymerization approach to multiwalled carbon nanotubes-reinforced nylon 1010 composites: mechanical properties and crystallization behavior. Polymer 47: 113–122.

      71 71 Wang, X., Hu, Y., Song, L. et al. (2011). In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties. J. Mater. Chem. 21: 4222–4227.

      72 72 Fim, F.d.C., Basso, N.R.S., Graebin, A.P. et al. (2013). Thermal, electrical, and mechanical properties of polyethylene–graphene nanocomposites obtained by in situ polymerization. J. Appl. Polym. Sci. 128: 2630–2637.

      73 73 Zhu, J., Lim, J., Lee, C.-H. et al. (2014). Multifunctional polyimide/graphene oxide composites via in situ polymerization. J. Appl. Polym. Sci. 131: 40177.

      74 74 Potts, J.R., Lee, S.H., Alam, T.M. et al. (2011). Thermomechanical properties of chemically modified graphene/poly(methyl methacrylate) composites made by in situ polymerization. Carbon 49: 2615–2623.

      75 75 Lee, J.K.Y., Chen, N., Peng, S. et al. (2018). Polymer-based composites by electrospinning: preparation & functionalization with nanocarbons. Prog. Polym. Sci. 86: 40–84.

      76 76 Mamunya, E., Davidenko, V., and Lebedev, E. (1995). Percolation conductivity of polymer composites filled with dispersed conductive filler. Polym. Compos. 16: 319–324.

      77 77 Zhou, J., Xu, X., Xin, Y., and Lubineau, G. (2018). Coaxial thermoplastic elastomer-wrapped carbon nanotube fibers for deformable and wearable strain sensors. Adv. Funct. Mater. 28: 1705591.

      78 78 Wang, X., Sun, H., Yue, X. et al. (2018). A highly stretchable carbon nanotubes/thermoplastic polyurethane fiber-shaped strain sensor with porous structure for human motion monitoring. Compos. Sci. Technol. 168: 126–132.

      79 79 Li, J., Zhang, D., Yang, T. et al. (2018). Nanofibrous membrane of graphene oxide-in-polyacrylonitrile composite with low filtration resistance for the effective capture of PM2.5. J. Membr. Sci. 551: 85–92.

      80 80 Yu, S., Wang, X., Xiang, H. et al. (2018). Superior piezoresistive strain sensing behaviors of carbon nanotubes in one-dimensional polymer fiber structure. Carbon 140: 1–9.

      81 81 Roh, E., Hwang, B.-U., Kim, D. et al. (2015). Stretchable, transparent, ultrasensitive, and patchable strain sensor for human–machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 9: 6252–6261.

      82 82 Zheng, Y., Li, Y., Dai, K. et al. (2018). A highly stretchable and stable strain sensor based on hybrid carbon nanofillers/polydimethylsiloxane conductive composites for large human motions monitoring. Compos. Sci. Technol. 156: 276–286.

      83 83 Xu, H., Qu, M., and Schubert, D.W. (2019). Conductivity of poly(methyl methacrylate) composite films filled with ultra-high aspect ratio carbon fibers. Compos. Sci. Technol. 181: 107690.

      84 84 Duan, S., Wang, Z., Zhang, L. et al. (2018). A highly stretchable, sensitive, and transparent strain sensor based on binary hybrid network consisting of hierarchical multiscale metal nanowires. Adv. Mater. Technol. 3: 1800020.

      85 85 Fan, X., Wang, N., Yan, F. et al. (2018). A transfer-printed, stretchable, and reliable strain sensor using PEDOT:PSS/Ag NW hybrid films embedded into elastomers. Adv. Mater. Technol. 3: 1800030.

      86 86 Joo, Y., Byun, J., Seong, N. et al. (2015). Silver nanowire-embedded PDMS with a multiscale structure for a highly sensitive and robust flexible pressure sensor. Nanoscale 7: 6208–6215.

      87 87 Huang, W., Dai, K., Zhai, Y. et al. (2017). Flexible and lightweight pressure sensor based on carbon nanotube/thermoplastic polyurethane-aligned conductive foam with superior compressibility and stability. ACS Appl. Mater. Interfaces 9: 42266–42277.

      88 88 Liu, H., Dong, M., Huang, W. et al. (2017). Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing. J. Mater. Chem. C 5: 73–83.

      89 89 Malliaris, A. and Turner, D.T. (1971). Influence of particle size on the electrical resistivity of compacted mixtures of polymeric and metallic powders.


Скачать книгу