Amorphous Nanomaterials. Lin Guo
in situ XAS characterization of CoV‐UAH. (a) and (b) Co K‐edge XANES data collected on the initial state. (c) and (d) V K‐edge XANES data collected on the initial state."/>
Figure 2.14 In situ XAS characterization of CoV-UAH. (a) and (b) Co K-edge XANES data collected on the initial state. (c) and (d) V K-edge XANES data collected on the initial state. Source: Reproduced with permission from Liu et al. [112]. Copyright 2018, The Royal Society of Chemistry.
References
1 1 Kirkland, E.J. (1984). Improved high resolution image processing of bright field electron micrograph: I. Theory. Ultramicroscopy 15: 151–172.
2 2 Lichte, H. (1986). Electron holography approaching atomic resolution. Ultramicroscopy 20: 293–304.
3 3 Scherzer, O. (1947). Spharische und chromatische korrektur von electronen-linsen. Optik 2: 114–132.
4 4 Crewe, A.V., Isaacson, M., and Johnson, D. (1969). A simple scanning electron microscope. Rev Sci. Instrum. 40: 241–246.
5 5 Browning, N.D., Chisholm, M.F., and Pennycook, S.J. (1993). Atomic-resolution chemical analysis using a scanning transmission electron microscope. Nature 366: 143–146.
6 6 Crewe, A.V., Isaacson, M., and Johnson, D. (1971). A high resolution electron spectrometer for use in transmission scanning electron microscopy. Rev. Sci. Instrum. 42: 411–420.
7 7 Muler, D.A., Tzou, Y., Raj, R., and Silcox, J. (1993). Mapping sp2 and sp3 states of carbon at sub-nanometre spatial resolution. Nature 366: 725–727.
8 8 Baston, P.E. (1993). Simultaneous STEM imaging and electron energy-loss spectroscopy with atomic-column sensitivity. Nature 366: 727–728.
9 9 Rose, H. (1990). Outline of a spherically corrected semiaplanatic medium voltage transmission electron microscope. Optik 85: 19–24.
10 10 Meyer, R., Kirkland, A., and Saxton, W. (2004). A new method for the determination of the wave aberration function for high-resolution TEM.: 2. Measurement of the antisymmetric aberrations. Ultramicroscopy 99: 115–123.
11 11 Kuglin, C.D. and Hines, D.C. (1975). The phase correlation image alignment method. Proceedings of the IEEE International Conference on Cybernetics and Society, 163-165.
12 12 Tillmann, K., Thust, A., and Urban, K. (2004). Spherical aberration correction in tandem with exit-plane wave function reconstruction: interlocking tools for the atomic scale imaging of lattice defects in GaAs. Microsc. Microanal. 10: 185–198.
13 13 Nellist, P.D., Behan, G., Kirkland, A.I., and Hetherington, C.J.D. (2006). Confocal operation of a transmission electron microscope with two aberration correctors. Appl. Phys. Lett. 89: 124105.
14 14 Pennycook, S.J., Chisholm, M.F., Varela, M. et al. (2004). Materials applications of aberration-corrected STEM. Microsc. Microanal. 10: 12–13.
15 15 Findlay, S.D., Shibata, N., Sawada, H. et al. (2009). Robust atomic resolution imaging of light elements using scanning transmission electron microscopy. Appl. Phys. Lett. 95: 191913.
16 16 Jia, C.L., Houben, L., Thust, A., and Barthel, J. (2010). On the benefit of the negative-spherical aberration imaging technique for the quantitative HRTEM. Ultramicroscopy 110: 500–505.
17 17 Krivanek, O.L., Chisholm, M.F., Nicolosi, V. et al. (2010). Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464: 571–574.
18 18 Gibson, J.M. (1987). Now you see them, now you don’t. Nature 329: 763–764.
19 19 Huxford, N.P., Eaglesham, D.J., and Humphreys, C.J. (1987). Limits on quantitative information from high-resolution electron microscopy of YBa2Cu3O7 superconductors. Nature 329: 812–813.
20 20 Coene, W., Janssen, G., Op de Beeck, M., and Van Dyck, D. (1992). Phase retrieval through focus variation for ultra-resolution in field-emission transmission electron microscopy. Phys. Rev. Lett. 69: 3743–3746.
21 21 Jia, C.L. and Urban, K. (1998). Microstructure of columnar-grained SrTiO3 and BaTiO3 thin films prepared by chemical solution deposition. J. Mater. Res. 13: 2206–2217.
22 22 Jia, C.L., Mi, S.B., Urban, K. et al. (2008). Atomic-scale study of electric dipoles near charge and uncharged domain walls in ferroelectric films. Nat. Mater. 7: 57–61.
23 23 Muller, D.A., Sorsch, T., Moccio, S. et al. (1999). The electronic structure at the atomic scale of ultrathin gate oxides. Nature 399: 758–761.
24 24 Chau, R., Doyle, B., Datta, S. et al. (2007). Integrated nanoelectronics for the future. Nat. Mater. 6: 810–812.
25 25 Baibich, M.N., Broto, J.M., Fert, A. et al. (1988). Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices. Phys. Rev. Lett. 61: 2472–2475.
26 26 Murdock, E.S., Natarajan, B.R., and Walmsley, R.G. (1990). Noise properties of multilayered Co-alloy magnetic recording media. IEEE Trans. Magn. 26: 2700–2705.
27 27 Moodera, J.S., Kinder, L.R., Wong, T.M., and Meservey, R. (1995). Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74: 3273–3276.
28 28 Fert, A. (2008). Origin, development and future of spintronics (Noble lecture). Angew. Chem. Int. Ed. 47: 5956–5967.
29 29 Schweinfest, R., Paxton, A.T., and Finnis, M.W. (2004). Bismuth embrittlement of copper is an atomic size effect. Nature 432: 1008–1011.
30 30 Lozovoi, A.Y., Paxton, A.T., and Finnis, M.W. (2006). Structural and chemical embrittlement of grain boundaries by impurities: a general theory and first principles calculations for copper. Phys. Rev. B 74: 155416.
31 31 Voyles, P.M., Muller, D.A., Grazuil, J.L. et al. (2002). Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si. Nature 416: 826–829.
32 32 Jia, C.L., Lentzen, M., and Urban, K. (2003). Atomic-resolution imaging of oxygen in perovskite ceramics. Science 299: 870–873.
33 33 Muller, D.A., Nakagawa, N., Ohtomo, A. et al. (2004). Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3. Nature 430: 657–661.
34 34 Ishikawa, R., Okunishi, E., Sawada, H. et al. (2011). Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy. Nat. Mater. 10: 278–281.
35 35 Krivanek, O.L., Dellby, N., Murfitt, M.F. et al. (2010). Gentle STEM: ADF imaging and EELS at low primary energies. Ultramicroscopy 110: 935–945.
36 36 Ohtsuka, M., Yamazaki, T., Kotaka, Y. et al. (2012). Imaging of light and heavy atomic columns by spherical aberration corrected middle-angle bright-field STEM. Ultramicroscopy 120: 48–55.
37 37 Lin, J., Cretu, O., Zhou, W. et al. (2014). Flexible metallic nanowires with self-adaptive contacts to semiconducting transition-metal dichalcogenide monolayers. Nat. Nanotechnol. 9: 436–442.
38 38 Zan, R., Ramasse, Q.M., Banegert, U., and Novoselow, K.S. (2012). Graphene re-knits its holes. Nano Lett. 12: 3936–3940.
39 39 Gong, Y., Liu, Z., Lipini, A.R. et al. (2014). Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. Nano Lett. 14: 442–449.
40 40 Biskup, N., Salafranca, J., Mehta, V. et al. (2014). Insulating ferromagnetic LaCoO3-δ films: a phase induced by ordering of oxygen vacancies. Phys. Rev. Lett. 112: 087202.
41 41 Spiecker, E., Garbrecht, M., Jager, W., and Tillmann, K. (2010). Advantages of aberration correction for HRTEM investigation of complex layer compounds. J. Microsc. 237: 341–346.
42 42 Crewe, A.V. (1966). Scanning electron microscopes: is high resolution possible? Science 154: 729–738.
43 43 Neaton, J.B., Muller, D.A., and Ashcroft, N.W. (2000). Electronic properties of the Si/SiO2 interface from first principles. Phys. Rev. Lett. 85: 1298–1301.
44 44 Muller, D.A., Singh, D.J., and Silcox, J. (1998). Connections