Amorphous Nanomaterials. Lin Guo

Amorphous Nanomaterials - Lin Guo


Скачать книгу
of nickel aluminum alloys. Phys. Rev. B 57: 8182–8202.

      45 45 Ohtomo, A., Muller, D.A., Grazul, J.L., and Hwang, H.Y. (2002). Artificial charge-modulation in atomic-scale perovskite titanate superlattices. Nature 419: 378–380.

      46 46 Browning, N.D., Wallis, D.J., Nellist, P.D., and Pennycook, S.J. (1997). EELS in the STEM: determination of materials properties on the atomic scale. Micron 28: 333–348.

      47 47 Scheinfein, M. and Isaacson, M. (1986). Electronic and chemical analysis of fluoride interface structures at subnanometer spatial resolution. J. Vac. Sci. Technol. B 4: 325–332.

      48 48 Daulton, T.L., Little, B.J., and Lowe, K. (2003). Determination of chromium oxidation state in cultures of dissimilatory metal reducing bacteria by electron energy loss spectroscopy. Microsc. Microanal. 9: 1480–1481.

      49 49 Bosman, M., Watanabe, M., Alexander, D.T.L., and Keast, V.J. (2006). Mapping chemical and bonding information using multivariate analysis of electron energy-loss spectrum images. Ultramicroscopy 106: 1024–1032.

      50 50 Krivanek, O.L., Dellby, N., Keyse, R.J. et al. (2008). CHAPTER 3- Advances in aberration-corrected scanning transmission electron microscopy and electron energy-loss spectroscopy. Adv. Imag. Elect. Phys. 153: 121–160.

      51 51 Howie, A. (1963). Inelastic scattering of electrons by crystals I. The theory of small-angle inelastic scattering. Proc. R. Soc. Lond. A 271: 268–287.

      52 52 Muller, D. and Silcox, J. (1995). Delocalization in inelastic scattering. Ultramicroscopy 59: 195–213.

      53 53 Kimoto, K., Asaka, T., Nagai, T. et al. (2007). Element-selective imaging of atomic columns in a crystal using STEM and EELS. Nature 450: 702–704.

      54 54 Yin, X.L., Calatayud, M., Qiu, H. et al. (2008). Diffusion versus desorption: complex behavior of H atoms on an oxide surface. ChemPhysChem 9: 253–257.

      55 55 Fan, C.Y., Wang, J., Jacobi, K., and Ertl, G.J. (2001). The oxidation of CO on RuO2 (110) at room temperature. Chem. Phys. 114: 1058–1061.

      56 56 Kurtz, M., Strunk, J., Hinrichsen, O. et al. (2005). Active sites on oxide surfaces: ZnO-catalyzed synthesis of methanol from CO and H2. Angew. Chem. Int. Ed. 44: 2790–2794.

      57 57 Suenage, K. and Koshino, M. (2012). Atom-by-atom spectroscopy at graphene edge. Nature 468: 1088–1090.

      58 58 Suenage, K., Kobayashi, H., and Koshino, M. (2012). Core-level spectroscopy of point defects in single layer h-BN. Phys. Rev. Lett. 108: 075501.

      59 59 Suenaga, K., Sato, Y., Liu, Z. et al. (2009). Visualizing and identifying single atoms using electron energy-loss spectroscopy with low accelerating voltage. Nat. Chem. 1: 415–418.

      60 60 Meyer, J.C., Kisielowski, C., Erni, R. et al. (2008). Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett. 8: 3582–3586.

      61 61 Ramasse, Q.M., Seabourne, C.R., Kepaptsogloum, D.M. et al. (2013). Probing the bonding and electronic structure of single atom dopants in grapheme with electron energy loss spectroscopy. Nano Lett. 13: 4989–4995.

      62 62 Andrews, S.B., Leapman, R.D., Landis, D.M., and Reese, T.S. (1987). Distribution of calcium and potassium in presynaptic nerve terminals from cerebellar cortex. Proc. Natl Acad. Sci. U S A 84: 1713–1717.

      63 63 Gloter, A., Suenaga, K., Kataura, H. et al. (2004). Structural evolutions of carbon nano-peapods under electron microscopic observation. Chem. Phys. Lett. 390: 462–466.

      64 64 Hunt, J.A. and Williams, D.B. (1991). Electron energy-loss spectrum-imaging. Ultramicroscopy 38: 47–73.

      65 65 Bosman, M., Keast, V., Garcia-Munoz, J. et al. (2007). Two-dimensional mapping of chemical information at atomic resolution. Phys. Rev. Lett. 99: 86102.

      66 66 Krivanek, O.L., Corbin, G.J., Dellby, N. et al. (2008). An electron microscope for the aberration-corrected era. Ultramicroscopy 108: 179–195.

      67 67 Egerton, F.R. (1975). Inelastic scattering of 80 keV electrons in amorphous carbon. Philos. Mag. 31: 199–215.

      68 68 Egerton, F.R. (2002). Improved background-fitting algorithms for ionization edges in electron energy-loss spectra. Ultramicroscopy 92: 47–56.

      69 69 Huang, J.Y., Zhong, L., Wang, C.M. et al. (2010). In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330: 1515–1520.

      70 70 Yuan, Y., Nie, A., Odegard, G.M. et al. (2015). Asynchronous crystal cell expansion during lithiation of K+-stabilized α–MnO2. Nano Lett. 15: 2998–3007.

      71 71 Poizot, P., Larulle, S., Grugeon, S. et al. (2000). Nano-sized transition-metal oxides as negative-electrode materials for the lithium-ion batteries. Nature 407: 496–499.

      72 72 He, K., Zhang, S., Li, J. et al. (2016). Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy. Nat. Commun. 7: 11441.

      73 73 Su, Q., Xie, D., Zhang, J. et al. (2013). In situ transmission electron microscopy observation of the conversion mechanism of Fe2O3/grapheme anode during lithiation-delithiation processes. ACS Nano 7: 6354–6360.

      74 74 Muralidharan, N., Brock, C.N., Cohn, A.P. et al. (2017). Tunable mechanochemistry of lithium battery electrodes. ACS Nano 11: 6243–6251.

      75 75 Qian, J., Xiong, Y., Cao, Y. et al. (2014). Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-ion batteries. Nano Lett. 14: 1865–1869.

      76 76 Li, Q., Wei, Q., Zuo, W. et al. (2016). Greigite Fe3S4 as a new anode material for high-performance sodium-ion batteries. Chem. Sci. 8: 160–164.

      77 77 Zhou, J., Chen, J., Chen, M. et al. (2019). Few-layer bismuthene with anisotropic expansion for high-areal-capacity sodium-ion batteries. Adv. Mater. 31: 1807874.

      78 78 Deng, L., Yang, Z., Tan, L. et al. (2018). Investigation of the prussian blue analog Co3[Co(CN)6]2 as an anode material for nonaqueous potassium-ion batteries. Adv. Mater. 30: 1802510.

      79 79 Niu, X., Zhang, Y., Tan, L. et al. (2019). Amorphous FeVO4 as a promising anode material for potassium-ion batteries. Energy Storage Mater. 22: 160–167.

      80 80 Zeng, Z., Liang, W.I., Liao, H.G. et al. (2014). Visualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM. Nano Lett. 14: 1745–1750.

      81 81 Egerton, R., Li, P., and Malac, M. (2004). Radiation damage in the TEM and SEM. Micron 35: 399–409.

      82 82 Liu, X.H., Liu, Y., Kushima, A. et al. (2012). In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures. Adv. Energy Mater. 2: 722–741.

      83 83 Abellan, P., Mehdi, B.L., Parent, L.R. et al. (2014). Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron microscopy. Nano Lett. 14: 1293–1299.

      84 84 Yuan, Y., Wood, S.M., He, K. et al. (2016). Atomistic insights into the oriented attachment of tunnel-based oxide nanostructures. ACS Nano 10: 539–548.

      85 85 Leenheer, A.J., Jungjohann, K.L., Zavadil, K.R. et al. (2015). Lithium electrodeposition dynamics in aprotic electrolyte observed in situ via transmission electron microscopy. ACS Nano 9: 4379–4389.

      86 86 Holtz, M.E., Yu, Y., Gunceler, D. et al. (2014). Nanoscale imaging of lithium ion distribution during in situ operation of a battery electrode and electrolyte. Nano Lett. 14: 1453–1459.

      87 87 Simonsen, S.B., Chorkendorff, I., Dahl, S. et al. (2010). Direct observations of oxygen-induced platinum nanoparticle ripening studied by in situ TEM. J. Am. Chem. Soc. 132: 7968–7975.

      88 88 Kinke, C., Bonard, J.M., and Kern, K. (2004). Formation of metallic nanocrystals from gel-like precursor films for CVD nanotube growth: an in situ TEM characterization. J. Phys. Chem. B 108: 11357–11360.

      89 89 Zhang, L., Miller, B.K., and Crozier, P.A. (2013). Atomic level in situ observation of surface amorphization in anatase photocatalyst during light irradiation in water vapor. Nano Lett. 13: 679–684.

      90 90


Скачать книгу