Amorphous Nanomaterials. Lin Guo
Yoshida, H., Kuwauchi, Y., Jinschek, J.R. et al. (2012). Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions. Science 335: 317–319.
93 93 Yoshida, H. and Takeda, S. (2005). Image formation in a transmission electron microscope equipped with an environment cell: single-walled carbon nanotube in source gases. Phys. Rev. B 72: 195428.
94 94 Suzuki, M., Yaguchi, T., and Zhang, X.F. (2013). High-resolution environmental transmission electron microscopy: modeling and experimental verification. Microscopy 62: 437–450.
95 95 Pastina, B. and LaVerne, J.A. (2001). Effect of molecular hydrogen on hydrogen peroxide in water radiolysis. J. Phys. Chem. A 105: 9316–9322.
96 96 Joseph, J.M., Seon Choi, B., Yakabuskie, P., and Clara Wren, J. (2008). A combined experimental and model analysis on the effect of pH and O2 (aq) on γ-radiolytically produced H2 and H2O2. Radiat. Phys. Chem. 77: 1009–1020.
97 97 Remita, H., Lampre, I., Mostafavi, M. et al. (2005). Comparative study of metal clusters induced in aqueous solutions by γ-rays, electron or C6+ ion beam irradiation. Radiat. Phys. Chem. 72: 575–586.
98 98 Zheng, H.M., Smith, R.K., Jun, Y.W. et al. (2009). Observation of single colloidal platinum nanocrystal growth trajectories. Science 324: 1309–1312.
99 99 Liao, H.G., Cui, L.K., Whitelam, S., and Zheng, H.M. (2012). Real-time imaging of Pt3Fe nanorod growth in solution. Science 336: 1011–1014.
100 100 Li, J., Chen, J., Wang, H. et al. (2018). In situ atomic-scale study of particle-mediated nucleation and growth in amorphous bismuth to nanocrystal phase transformation. Adv. Sci. 5: 1700992.
101 101 Yuk, J.M., Park, J., Ercius, P. et al. (2012). High resolution EM of colloidal nanocrystal growth using grapheme liquid cells. Science 336: 61–64.
102 102 Yu, Y., Xin, H.L., Howden, R. et al. (2012). Three-dimensional tracking and visualization of hundreds of Pt-Co fuel cell nanocatalysts during electrochemical aging. Nano Lett. 12: 4417–4423.
103 103 Kushima, A., Koido, T., Fujiwara, Y. et al. (2015). Charging/discharging nanomorphology capacity degradation in Li-oxygen battery. Nano Lett. 15: 8260–8265.
104 104 Ankudinov, A.L., Ravel, B., Rehr, J.J., and Conradson, S.D. (1998). Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure. Phys. Rev. B 58: 7565–7576.
105 105 Iwasawa, Y., Asakura, K., and Tada, M. (2017). XAFS Techniques for Catalysts, Nanomaterials, and Surfaces. Cham: Springer.
106 106 Calvin, S. (2013). XAFS for Everyone. Boca Raton, FL: CRC Press.
107 107 Sayers, D.E., Stern, E.A., and Lytle, F.W. (1971). New technique for investigating noncrystalline structures: Fourier analysis of the extended X-ray-absorption fine structure. Phys. Rev. Lett. 27: 1204.
108 108 Bordiga, S., Groppo, E., Agostini, G. et al. (2013). Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques. Chem. Rev. 113: 1736–1850.
109 109 Su, X.Z., Wang, Y., Zhou, J., and Gu, S.Q. (2018). Operando spectroscopic identification of active sites in NiFe prussian blue analogues as electrocatalysts: activation of oxygen atoms for oxygen evolution reaction. J. Am. Chem. Soc. 140: 11286–11292.
110 110 Song, S.Z., Zhou, J., Su, X.Z., and Wang, Y. (2018). Operando X-ray spectroscopic tracking of self-reconstruction for anchored nanoparticles as high-performance electrocatalysts towards oxygen evolution. Energy Environ. Sci. 10: 2945–2953.
111 111 Liu, J.Z., Nai, J.W., You, T.T., and An, P.F. (2018). The flexibility of an amorphous cobalt hydroxide nanomaterial promotes the electrocatalysis of oxygen evolution reaction. Small 14: 1703514–1703521.
112 112 Liu, J.Z., Ji, Y.F., and Nai, J.W. (2018). Ultrathin amorphous cobalt–vanadium hydr(oxy)oxide catalysts for the oxygen evolution reaction. Energy Environ. Sci. 11: 1736–1741.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.