Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Generalized Ordinary Differential Equations in Abstract Spaces and Applications - Группа авторов


Скачать книгу
infinity right-parenthesis comma upper X right-parenthesis"/> with the space upper B left-parenthesis left-bracket t 0 comma infinity right-parenthesis comma upper X right-parenthesis of bounded functions from left-bracket t 0 comma infinity right-parenthesis to upper X, in which case, we write upper B upper G left-parenthesis left-bracket t 0 comma infinity right-parenthesis comma upper X right-parenthesis and equip such space with the supremum norm,

f element-of upper B upper G left-parenthesis left-bracket t 0 comma infinity right-parenthesis comma upper X right-parenthesis right-arrow from bar parallel-to f parallel-to equals sup Underscript t element-of left-bracket t 0 comma infinity right-parenthesis Endscripts parallel-to f left-parenthesis t right-parenthesis parallel-to element-of double-struck upper R Subscript plus Baseline comma

      where double-struck upper R Subscript plus Baseline equals left-bracket 0 comma infinity right-parenthesis. Alternatively, we can consider a subspace upper G 0 left-parenthesis left-bracket t 0 comma infinity right-parenthesis comma upper X right-parenthesis of upper G left-parenthesis left-bracket t 0 comma infinity right-parenthesis comma upper X right-parenthesis formed by all functions f colon left-bracket t 0 comma infinity right-parenthesis right-arrow upper X such that

sup Underscript t element-of left-bracket t 0 comma infinity right-parenthesis Endscripts e Superscript minus left-parenthesis t minus t 0 right-parenthesis Baseline parallel-to f left-parenthesis t right-parenthesis parallel-to less-than infinity period

      The next result shows that upper G 0 left-parenthesis left-bracket t 0 comma infinity right-parenthesis comma upper X right-parenthesis is a Banach space with respect to a special norm. This result, whose proof follows ideas similar to those of [124, 220], will be largely used in. Chapters 5 and 8

      

      Proposition 1.9: The space , equipped with the norm

parallel-to f parallel-to equals sup Underscript t element-of left-bracket t 0 comma infinity right-parenthesis Endscripts e Superscript minus left-parenthesis t minus t 0 right-parenthesis Baseline parallel-to f left-parenthesis t right-parenthesis parallel-to comma f element-of upper G 0 left-parenthesis left-bracket t 0 comma infinity right-parenthesis comma upper X right-parenthesis comma

       is a Banach space.

      Proof. Let upper T colon upper G 0 left-parenthesis left-bracket t 0 comma infinity right-parenthesis comma upper X right-parenthesis right-arrow upper B upper G left-parenthesis left-bracket t 0 comma infinity right-parenthesis comma upper X right-parenthesis be the linear mapping defined by

left-parenthesis upper T y right-parenthesis left-parenthesis t right-parenthesis equals e Superscript minus left-parenthesis t minus t 0 right-parenthesis Baseline y left-parenthesis t right-parenthesis comma

      for all y element-of upper G 0 left-parenthesis left-bracket t 0 comma infinity right-parenthesis comma upper X right-parenthesis and t element-of left-bracket t 0 comma infinity right-parenthesis.

      Claim. upper T is an isometric isomorphism. Indeed, upper T is an isometry because

parallel-to upper T left-parenthesis y right-parenthesis parallel-to equals sup Underscript t element-of left-bracket t 0 comma infinity right-parenthesis Endscripts parallel-to left-parenthesis upper T y right-parenthesis left-parenthesis t right-parenthesis parallel-to equals sup Underscript t element-of left-bracket t 0 comma infinity right-parenthesis Endscripts parallel-to y left-parenthesis t right-parenthesis parallel-to e Superscript minus left-parenthesis t minus t 0 right-parenthesis Baseline equals parallel-to y parallel-to comma

      for all y element-of upper G 0 left-parenthesis left-bracket t 0 comma infinity right-parenthesis comma upper X right-parenthesis. Moreover, if y element-of upper B upper G left-parenthesis left-bracket t 0 comma infinity right-parenthesis comma upper X right-parenthesis, then u colon left-bracket t 0 comma infinity right-parenthesis right-arrow upper X defined by

u left-parenthesis t right-parenthesis equals e Superscript t minus t 0 Baseline y left-parenthesis t right-parenthesis comma for all t element-of left-bracket t 0 comma infinity right-parenthesis

      is such that upper T y equals u and u element-of upper G 0 left-parenthesis left-bracket t 0 comma infinity right-parenthesis comma upper X right-parenthesis, since

sup Underscript s element-of left-bracket t 0 comma infinity right-parenthesis Endscripts parallel-to u left-parenthesis s right-parenthesis parallel-to e Superscript minus left-parenthesis s minus t 0 right-parenthesis Baseline equals sup Underscript s element-of left-bracket t 0 comma infinity right-parenthesis Endscripts parallel-to y left-parenthesis s right-parenthesis parallel-to e Superscript s minus t 0 Baseline e Superscript minus left-parenthesis s minus t 0 right-parenthesis Baseline equals sup Underscript s element-of left-bracket t 0 comma infinity right-parenthesis Endscripts parallel-to y left-parenthesis s right-parenthesis parallel-to less-than infinity period

      Therefore, upper T is onto and the Claim is proved.

      Once upper T is an isometric isomorphism and upper B upper G left-parenthesis left-bracket t 0 comma infinity right-parenthesis comma upper X right-parenthesis is a Banach space, we conclude that upper G 0 left-parenthesis left-bracket t 0 comma infinity right-parenthesis comma upper X right-parenthesis is also a Banach space.

      1.1.2


Скачать книгу