Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Generalized Ordinary Differential Equations in Abstract Spaces and Applications - Группа авторов


Скачать книгу
Equiregulated Sets

      In this subsection, our goal is to investigate important properties of equiregulated sets. In addition to [97], the reference [40] also deals with a characterization of subsets of equiregulated functions.

      

      Definition 1.10: A set script í’œ subset-of upper G left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis is called equiregulated, if it has the following property: for every epsilon greater-than 0 and every sigma element-of left-bracket a comma b right-bracket, there exists delta greater-than 0 such that

      1 if , and , then ;

      2 if , and , then .

      The next result, which can be found in [97, Proposition 3.2], gives a characterization of equiregulated functions taking values in a Banach space.

      Theorem 1.11: A set is equiregulated if and only if for every , there is a division of such that

       for every and , for .

parallel-to f left-parenthesis t right-parenthesis minus f left-parenthesis t Superscript prime Baseline right-parenthesis parallel-to less-than-or-slanted-equals parallel-to f left-parenthesis t right-parenthesis minus f left-parenthesis a Superscript plus Baseline right-parenthesis parallel-to plus parallel-to f left-parenthesis t Superscript prime Baseline right-parenthesis minus f left-parenthesis a Superscript plus Baseline right-parenthesis parallel-to less-than-or-slanted-equals epsilon period

      Hence, a 1 element-of upper B.

      Let c overTilde be the supremum of the set upper B. Since f element-of script í’œ, f is regulated. Thus, there exists delta greater-than 0 such that parallel-to f left-parenthesis c overTilde Superscript minus Baseline right-parenthesis minus f left-parenthesis t right-parenthesis parallel-to less-than-or-slanted-equals StartFraction epsilon Over 2 EndFraction for every f element-of script í’œ and t element-of left-parenthesis c overTilde minus delta comma c overTilde right-parenthesis intersection left-bracket a comma b right-bracket. Take c element-of upper B intersection left-parenthesis c overTilde minus delta comma c overTilde right-parenthesis and a division d double-prime element-of upper D Subscript left-bracket a comma c right-bracket, say, d double-prime colon a equals t 0 less-than t 1 less-than midline-horizontal-ellipsis less-than t Subscript StartAbsoluteValue d Sub Superscript double-prime Subscript EndAbsoluteValue Baseline equals c, such that (1.1) holds with StartAbsoluteValue d double-prime EndAbsoluteValue instead of StartAbsoluteValue d EndAbsoluteValue. Denote t Subscript StartAbsoluteValue d double-prime EndAbsoluteValue plus 1 Baseline equals c overTilde. Then, for left-bracket t comma t Superscript prime Baseline right-bracket subset-of left-parenthesis t Subscript StartAbsoluteValue d Sub Superscript double-prime Subscript EndAbsoluteValue Baseline comma t Subscript StartAbsoluteValue d Sub Superscript double-prime Subscript EndAbsoluteValue plus 1 Baseline right-parenthesis and f element-of script í’œ, we have

Скачать книгу