Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Generalized Ordinary Differential Equations in Abstract Spaces and Applications - Группа авторов


Скачать книгу
sums concerning delta‐fine tagged divisions of an interval left-bracket a comma b right-bracket, we bring up an important result which guarantees the existence of a delta‐fine tagged division for a given gauge delta. This result is known as Cousin Lemma, and a proof of it can be found in [120, Theorem 4.1].

      

      Lemma 1.36 (Cousin Lemma): Given a gauge of , there exists a ‐fine tagged division of .

      Definition 1.37: We say that alpha is Kurzweil fintegrable (or Kurzweil integrable with respect to f), if there exists upper I element-of upper Y such that for every epsilon greater-than 0, there is a gauge delta on left-bracket a comma b right-bracket such that for every delta‐fine d equals left-parenthesis xi Subscript i Baseline comma left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket right-parenthesis element-of upper T upper D Subscript left-bracket a comma b right-bracket,

vertical-bar vertical-bar vertical-bar vertical-bar minus minus sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d times times of alpha alpha left-parenthesis right-parenthesis xi i left-bracket right-bracket minus minus of ff left-parenthesis right-parenthesis ti of ff left-parenthesis right-parenthesis t minus minus i 1 upper I less-than epsilon period

      In this case, we write upper I equals integral Subscript a Superscript b Baseline alpha left-parenthesis t right-parenthesis d f left-parenthesis t right-parenthesis and alpha element-of upper K Subscript f Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis.

      Analogously, we define the Kurzweil integral of f colon left-bracket a comma b right-bracket right-arrow upper X with respect to a function alpha colon left-bracket a comma b right-bracket right-arrow upper L left-parenthesis upper X comma upper Y right-parenthesis.

vertical-bar vertical-bar vertical-bar vertical-bar minus minus sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d times times left-bracket right-bracket minus minus of alpha alpha left-parenthesis right-parenthesis ti of alpha alpha left-parenthesis right-parenthesis t minus minus i 1 of ff left-parenthesis right-parenthesis xi iI less-than epsilon comma

      whenever d equals left-parenthesis xi Subscript i Baseline comma left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket right-parenthesis element-of upper T upper D Subscript left-bracket a comma b right-bracket is delta‐fine. In this case, we write upper I equals integral Subscript a Superscript b Baseline d alpha left-parenthesis t right-parenthesis f left-parenthesis t right-parenthesis and f element-of upper K Superscript alpha Baseline left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis.

      Suppose the Kurzweil vector integral integral Subscript a Superscript b Baseline alpha left-parenthesis t right-parenthesis d f left-parenthesis t right-parenthesis exists. Then, we define

integral Subscript b Superscript a Baseline alpha left-parenthesis t right-parenthesis d f left-parenthesis t right-parenthesis equals minus integral Subscript a Superscript b Baseline alpha left-parenthesis t right-parenthesis d f left-parenthesis t right-parenthesis period

      An analogous consideration holds for the Kurzweil vector integral integral Subscript a Superscript b Baseline d alpha left-parenthesis t right-parenthesis f left-parenthesis t right-parenthesis.

      If the gauge delta in the definition of alpha element-of upper K Subscript f Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis is a constant function, then we obtain the Riemann–Stieltjes integral integral Subscript a Superscript b Baseline alpha left-parenthesis t right-parenthesis d f left-parenthesis t right-parenthesis, and we write alpha element-of upper R Subscript f Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis. Similarly, when we consider only constant gauges delta in the definition of f element-of upper K Superscript alpha Baseline left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis, we obtain the Riemann–Stieltjes integral integral Subscript a Superscript b Baseline d alpha left-parenthesis <hr><noindex><a href=Скачать книгу