Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Generalized Ordinary Differential Equations in Abstract Spaces and Applications - Группа авторов


Скачать книгу
href="#fb3_img_img_8afa513f-85fe-577d-968c-2315adec5a1c.png" alt="upper R left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis"/>) which does not belong to upper H left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis, showing that, in the infinite dimensional‐valued case, upper H left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis may be a proper subset of upper K left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis.

      

      Example 1.44: Let upper I subset-of double-struck upper R be an arbitrary set and let upper E be a normed space. A family left-brace x Subscript i Baseline right-brace Subscript i element-of upper I of elements of upper E is summable with sum x element-of upper E (we write sigma-summation Underscript i element-of upper I Endscripts x Subscript i Baseline equals x), if for every epsilon greater-than 0, there is a finite subset upper F Subscript epsilon Baseline subset-of upper I such that for every finite subset upper F subset-of upper I with upper F superset-of upper F Subscript epsilon, parallel-to x minus sigma-summation Underscript i element-of upper F Endscripts x Subscript i Baseline parallel-to less-than epsilon period

      Let l 2 left-parenthesis upper I right-parenthesis denote the set of all families left-brace x Subscript i Baseline right-brace Subscript i element-of upper I, x Subscript i Baseline element-of double-struck upper R, such that the family left-brace StartAbsoluteValue x Subscript i Baseline EndAbsoluteValue squared right-brace Subscript i element-of upper I is summable, that is,

l 2 left-parenthesis upper I right-parenthesis equals StartSet x equals left-brace x Subscript i Baseline right-brace Subscript i element-of upper I Baseline comma x Subscript i Baseline element-of double-struck upper R colon sigma-summation Underscript i element-of upper I Endscripts StartAbsoluteValue x Subscript i Baseline EndAbsoluteValue squared less-than infinity EndSet period

      In what follows, we will use the the Bessel equality given as

parallel-to x parallel-to equals sigma-summation Underscript i element-of upper I Endscripts StartAbsoluteValue left pointing angle x Subscript i Baseline comma e Subscript i Baseline right pointing angle EndAbsoluteValue squared equals sigma-summation Underscript i element-of upper I Endscripts StartAbsoluteValue x Subscript i Baseline EndAbsoluteValue squared comma x element-of l 2 left-parenthesis upper I right-parenthesis period

      Let left-bracket a comma b right-bracket be a nondegenerate closed interval of double-struck upper R and upper X equals l 2 left-parenthesis left-bracket a comma b right-bracket right-parenthesis be equipped with the norm

x right-arrow from bar vertical-bar vertical-bar vertical-bar vertical-bar x Subscript 2 Baseline equals left-parenthesis sigma-summation Underscript i element-of left-bracket a comma b right-bracket Endscripts StartAbsoluteValue x Subscript i Baseline EndAbsoluteValue squared right-parenthesis Superscript 1 slash 2 Baseline period

      Consider a function f colon left-bracket a comma b right-bracket right-arrow upper X given by f left-parenthesis t right-parenthesis equals e Subscript t, t element-of left-bracket a comma b right-bracket. Given epsilon greater-than 0, there exists delta greater-than 0, with delta Superscript one half Baseline less-than StartFraction epsilon Over left-parenthesis b minus a right-parenthesis Superscript one half Baseline EndFraction, such that for every left-parenthesis StartFraction delta Over 2 EndFraction right-parenthesis‐fine d equals left-parenthesis xi Subscript j Baseline comma left-bracket t Subscript j minus 1 Baseline comma t Subscript j Baseline right-bracket right-parenthesis element-of upper T upper D Subscript left-bracket a comma b right-bracket,

StartLayout 1st Row 1st Column Blank 2nd Column vertical-bar vertical-bar vertical-bar vertical-bar <hr><noindex><a href=Скачать книгу