Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Generalized Ordinary Differential Equations in Abstract Spaces and Applications - Группа авторов


Скачать книгу
sigma-summation sigma-summation equals equals j 1 vertical-bar vertical-bar d times times of ff left-parenthesis right-parenthesis xi j left-parenthesis right-parenthesis minus minus tjt minus minus j 10 Subscript 2 Baseline equals vertical-bar vertical-bar vertical-bar vertical-bar sigma-summation sigma-summation equals equals j 1 vertical-bar vertical-bar d times times e xi j left-parenthesis right-parenthesis minus minus tjt minus minus j 1 Subscript 2 Baseline 2nd Row 1st Column Blank 2nd Column equals left-bracket sigma-summation Underscript j equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts StartAbsoluteValue t Subscript j Baseline minus t Subscript j minus 1 Baseline EndAbsoluteValue squared right-bracket Superscript one half Baseline less-than delta Superscript one half Baseline left-bracket sigma-summation Underscript j equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts left-parenthesis t Subscript j Baseline minus t Subscript j minus 1 Baseline right-parenthesis right-bracket Superscript one half Baseline less-than epsilon comma EndLayout"/>

      where we applied the Bessel equality. Thus, f element-of upper R left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis subset-of upper K left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis and f overTilde equals 0, since integral Subscript a Superscript t Baseline f left-parenthesis s right-parenthesis d s equals 0 for every t element-of left-bracket a comma b right-bracket. On the other hand,

sigma-summation Underscript j equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar minus minus times times of ff left-parenthesis right-parenthesis xi j left-parenthesis right-parenthesis minus minus tjt minus minus j 10 Subscript 2 Baseline equals b minus a

      for every left-parenthesis xi Subscript j Baseline comma left-bracket t Subscript j minus 1 Baseline comma t Subscript j Baseline right-bracket right-parenthesis element-of upper T upper D Subscript left-bracket a comma b right-bracket. Hence, f not-an-element-of upper H left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis.

      1.3.2 Basic Properties

      The first result we present in this subsection is known as the Saks–Henstock lemma, and it is useful in many situations. For a proof of it, see [210, Lemma 16], for instance. Similar results hold if we replace upper K Subscript f Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis by upper R Subscript f Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis and also upper K Superscript alpha Baseline left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis by upper R Superscript alpha Baseline left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis.

      Lemma 1.45 (Saks–Henstock Lemma): The following assertions hold.

      1 Let and . Given , let be a gauge on such that for every ‐fine ,Then, for every ‐fine , we have

      2 Let and Given , let be a gauge on such that for every ‐fine ,Then, for every ‐fine , we have

      Now, we define some important sets of functions.

      Definition 1.46: Let upper C Superscript sigma Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis be the set of all functions alpha colon left-bracket a comma b right-bracket right-arrow upper L left-parenthesis upper X comma upper Y right-parenthesis which are weakly continuous, that is, for every x element-of upper X, the function t element-of left-bracket a comma b right-bracket right-arrow from bar alpha left-parenthesis t right-parenthesis x element-of upper Y is continuous, and we denote by upper G Superscript sigma Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis the set of all weakly regulated functions alpha colon left-bracket a comma b right-bracket right-arrow upper L left-parenthesis upper X comma upper Y right-parenthesis, that is, for every x element-of upper X, the function t element-of left-bracket a comma b right-bracket right-arrow from bar alpha left-parenthesis t right-parenthesis x element-of upper Y is r egulated.

      Given alpha element-of upper G Superscript sigma Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis and x element-of upper X, let us define

StartLayout 1st Row 1st Column Blank 2nd Column alpha left-parenthesis t plus right-parenthesis x equals left-parenthesis alpha x right-parenthesis left-parenthesis t Superscript plus Baseline right-parenthesis equals limit Underscript rho right-arrow 0 Superscript plus Baseline Endscripts left-parenthesis alpha x right-parenthesis left-parenthesis t plus rho right-parenthesis comma t element-of left-bracket a comma b right-parenthesis 2nd Row 1st Column Blank 2nd Column alpha left-parenthesis t minus right-parenthesis x equals left-parenthesis alpha x right-parenthesis left-parenthesis t Superscript minus Baseline right-parenthesis equals limit Underscript rho right-arrow 0 Superscript plus Baseline Endscripts left-parenthesis alpha x right-parenthesis left-parenthesis t minus rho right-parenthesis comma t element-of left-parenthesis a comma b right-bracket period EndLayout

      By the Banach–Steinhaus theorem, the limits alpha left-parenthesis t plus right-parenthesis and alpha left-parenthesis t minus right-parenthesis exist and belong to upper L left-parenthesis upper X comma upper Y right-parenthesis. Then, by the Uniform Boundedness Principle, upper G Superscript sigma Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis is a Banach space when equipped with the usual supremum norm. It is also clear that

Скачать книгу