Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Generalized Ordinary Differential Equations in Abstract Spaces and Applications - Группа авторов


Скачать книгу
norm (see [5]) given by

parallel-to f parallel-to equals parallel-to f overTilde parallel-to equals sup Underscript t element-of left-bracket a comma b right-bracket Endscripts StartAbsoluteValue integral Subscript a Superscript t Baseline f left-parenthesis s right-parenthesis d s EndAbsoluteValue

      is noncomplete (see [24], for instance). The same applies to Banach space-valued functions. Let us denote by bold upper K left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis the space of all equivalence classes of functions f element-of upper K left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis, equipped with the Alexiewicz norm parallel-to f parallel-to equals parallel-to f overTilde parallel-to period The space bold upper K left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis is noncomplete (see [129]). However, bold upper K left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis is ultrabornological (see [105]) and, therefore, barrelled. In particular, good functional analytic properties hold, such as the Banach–Steinhaus theorem and the Uniform Boundedness Principle (see, for instance, [142]). The same applies to the space bold upper H left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis of equivalence classes of functions f element-of upper H left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis, endowed with the Alexiewicz norm parallel-to f parallel-to equals parallel-to f overTilde parallel-to.

      The next example, borrowed from [73], exhibits a Cauchy sequence of Henstock integrable functions which is not convergent in the usual Alexiewicz norm, parallel-to dot parallel-to Subscript upper A Baseline.

      Example 1.84: Consider functions f Subscript n Baseline colon left-bracket 0 comma 1 right-bracket right-arrow l 2 left-parenthesis double-struck upper N times double-struck upper N right-parenthesis, n element-of double-struck upper N defined by f Subscript n Baseline equals sigma-summation Underscript i equals 1 Overscript n Endscripts g Subscript i, where g Subscript i Baseline left-parenthesis t right-parenthesis equals e Subscript i j, whenever StartFraction j minus 1 Over 2 Superscript i Baseline EndFraction less-than-or-slanted-equals t less-than StartFraction j Over 2 Superscript i Baseline EndFraction, j equals 1 comma 2 comma ellipsis comma 2 Superscript i, and g Subscript i Baseline left-parenthesis t right-parenthesis equals 0 otherwise.

      Hence,

vertical-bar vertical-bar vertical-bar vertical-bar g 1 Subscript upper A Baseline equals sup Underscript 0 less-than-or-slanted-equals t less-than-or-slanted-equals 1 Endscripts vertical-bar vertical-bar vertical-bar vertical-bar integral integral 0 tg 1 Subscript 2 Baseline equals vertical-bar vertical-bar vertical-bar vertical-bar integral integral 01 g 1 Subscript 2 Baseline equals vertical-bar vertical-bar vertical-bar vertical-bar plus plus 12 e 1112 e 12 Subscript 2 Baseline equals left-parenthesis one half right-parenthesis Superscript one half Baseline period

      Then,

integral Subscript 0 Superscript 1 Baseline g 2 equals integral Subscript 0 Superscript one fourth Baseline e 21 plus integral Subscript one fourth Superscript one half Baseline e 22 plus integral Subscript one half Superscript three fourths Baseline e 23 plus integral Subscript three fourths Superscript 1 Baseline e 24 equals one fourth left-parenthesis e 21 plus e 22 plus e 23 plus e 24 right-parenthesis

      and, hence,

vertical-bar vertical-bar vertical-bar vertical-bar g 2 Subscript upper A Baseline equals sup Underscript 0 less-than-or-slanted-equals t less-than-or-slanted-equals 1 Endscripts vertical-bar vertical-bar vertical-bar vertical-bar integral integral 0 tg 2 Subscript 2 Baseline equals vertical-bar vertical-bar vertical-bar vertical-bar integral integral 01 g 2 Subscript 2 Baseline equals left-parenthesis 4 StartFraction 1 Over 4 squared EndFraction right-parenthesis Superscript one half Baseline equals left-parenthesis one fourth right-parenthesis Superscript one half Baseline period vertical-bar vertical-bar vertical-bar vertical-bar gi Subscript upper A Baseline equals vertical-bar vertical-bar vertical-bar vertical-bar sigma-summation sigma-summation equals equals j 12 i integral integral minus minus j 12 ij 2 ie times times ij Subscript 2 Baseline equals left-bracket 2 Superscript i Baseline left-parenthesis StartFraction 1 Over 2 Superscript i Baseline EndFraction right-parenthesis squared right-bracket Superscript one half Baseline equals StartFraction 1 Over 2 Superscript StartFraction i Over 2 EndFraction Baseline EndFraction comma

      for every i element-of double-struck upper N. Then,

vertical-bar vertical-bar vertical-bar vertical-bar minus minus fnfm Subscript upper A Baseline equals vertical-bar vertical-bar vertical-bar vertical-bar sigma-summation sigma-summation equals equals i plus plus n 1 mgi Subscript upper A Baseline less-than-or-slanted-equals sigma-summation Underscript i equals n plus 1 Overscript m Endscripts StartFraction 1 Over 2 Superscript StartFraction i Over 2 EndFraction Baseline EndFraction

      which goes to zero for sufficiently large n comma m element-of double-struck upper N, with n greater-than m. Thus, left-brace f Subscript n Baseline right-brace Subscript n element-of double-struck upper N is a parallel-to dot parallel-to Subscript upper A Baseline-Cauchy sequence. On the other hand,

vertical-bar vertical-bar vertical-bar vertical-bar of ffn left-parenthesis right-parenthesis t Subscript 2 Baseline equals vertical-bar vertical-bar vertical-bar vertical-bar plus plus plus plus of gg 1 left-parenthesis right-parenthesis t of gg 2 left-parenthesis right-parenthesis t midline-horizontal-ellipsis of ggn left-parenthesis right-parenthesis t Subscript 2 Baseline equals StartRoot n EndRoot comma

      for every t element-of left-bracket 0 comma 1 right-bracket. Hence, there is no function Скачать книгу