Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Generalized Ordinary Differential Equations in Abstract Spaces and Applications - Группа авторов


Скачать книгу
any nondegenerate subinterval of left-bracket a comma b right-bracket. Hence, beta element-of upper G left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis. Then, the Riemann integral integral Subscript a Superscript b Baseline beta left-parenthesis s right-parenthesis f prime left-parenthesis s right-parenthesis d s exists and

      Let delta 1 be the gauge on left-bracket a comma b right-bracket from the definition of integral Subscript a Superscript b Baseline beta left-parenthesis s right-parenthesis f prime left-parenthesis s right-parenthesis d s. Take t element-of left-bracket a comma b right-bracket, and for every xi element-of left-bracket a comma t right-bracket, let delta 2 left-parenthesis xi right-parenthesis greater-than 0 be such that if xi minus delta 2 left-parenthesis xi right-parenthesis less-than s less-than xi less-than u less-than xi plus delta 2 left-parenthesis xi right-parenthesis, then, by the Straddle Lemma (Lemma 1.86), we have

StartLayout 1st Row 1st Column Blank 2nd Column vertical-bar vertical-bar vertical-bar vertical-bar minus minus sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d times times of beta beta left-parenthesis right-parenthesis xi i left-bracket right-bracket minus minus of ff left-parenthesis right-parenthesis ti of ff left-parenthesis right-parenthesis t minus minus i 1 integral integral at times times of beta beta left-parenthesis right-parenthesis s of ff prime left-parenthesis right-parenthesis s separator d separator s 2nd Row 1st Column Blank 2nd Column less-than-or-slanted-equals vertical-bar vertical-bar vertical-bar vertical-bar minus minus sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d times times of beta beta left-parenthesis right-parenthesis xi i left-bracket right-bracket minus minus of ff left-parenthesis right-parenthesis ti of ff left-parenthesis right-parenthesis t minus minus i 1 sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d times times times of beta beta left-parenthesis right-parenthesis xi i of ff prime left-parenthesis right-parenthesis ti left-parenthesis right-parenthesis minus minus tit minus minus i 1 3rd Row 1st Column Blank 2nd Column plus vertical-bar vertical-bar vertical-bar vertical-bar minus minus sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d times times times of beta beta left-parenthesis right-parenthesis xi i of ff prime left-parenthesis right-parenthesis ti left-parenthesis right-parenthesis minus minus tit minus minus i 1 integral integral at times times of beta beta left-parenthesis right-parenthesis s of ff prime left-parenthesis right-parenthesis s separator d separator s 4th Row 1st Column Blank 2nd Column less-than vertical-bar vertical-bar vertical-bar vertical-bar beta sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar minus minus minus of ff left-parenthesis right-parenthesis ti of ff left-parenthesis right-parenthesis t minus minus i 1 times times of ff prime left-parenthesis right-parenthesis ti left-parenthesis right-parenthesis minus minus tit minus minus i 1 plus epsilon 5th Row 1st Column Blank 2nd Column less-than vertical-bar vertical-bar vertical-bar vertical-bar beta sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts epsilon left-parenthesis t Subscript i Baseline minus t Subscript i minus 1 Baseline right-parenthesis plus epsilon equals vertical-bar vertical-bar vertical-bar vertical-bar beta epsilon left-parenthesis t minus a right-parenthesis plus epsilon comma EndLayout
Скачать книгу