Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Generalized Ordinary Differential Equations in Abstract Spaces and Applications - Группа авторов


Скачать книгу
right-parenthesis t d t less-than infinity period"/>

      Again, we explicit the “name” of the integral we are dealing with, whenever we believe there is room for ambiguity.

      As we mentioned earlier, when only real-valued functions are considered, the Lebesgue integral is equivalent to a modified version of the Kurzweil–Henstock (or Perron) integral called McShane integral. The idea of slightly modifying the definition of the Kurzweil–Henstock integral is due to E. J. McShane [173, 174]. Instead of taking tagged divisions of an interval left-bracket a comma b right-bracket, McShane considered what we call semitagged divisions, that is,

a equals t 0 less-than t 1 ellipsis less-than t Subscript StartAbsoluteValue d EndAbsoluteValue Baseline equals b

      is a division of left-bracket a comma b right-bracket and, to each subinterval left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket, with i equals 1 comma 2 comma ellipsis comma StartAbsoluteValue d EndAbsoluteValue, we associate a point xi Subscript i Baseline element-of left-bracket a comma b right-bracket called “tag” of the subinterval left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket. We denote such semitagged division by d equals left-parenthesis xi Subscript i Baseline comma left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket right-parenthesis and, by upper S upper T upper D Subscript left-bracket a comma b right-bracket, we mean the set of all semitagged divisions of the interval left-bracket a comma b right-bracket. But what is the difference between a semitagged division and a tagged division? Well, in a semitagged division left-parenthesis xi Subscript i Baseline comma left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket right-parenthesis element-of upper S upper T upper D Subscript left-bracket a comma b right-bracket, it is not required that a tag xi Subscript i belongs to its associated subinterval left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket. In fact, neither the subintervals need to contain their corresponding tags. Nevertheless, likewise for tagged divisions, given a gauge delta of left-bracket a comma b right-bracket, in order for a semitagged division left-parenthesis xi Subscript i Baseline comma left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket right-parenthesis element-of upper S upper T upper D Subscript left-bracket a comma b right-bracket to be delta-fine, we need to require that

left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket subset-of StartSet t element-of left-bracket a comma b right-bracket colon StartAbsoluteValue t minus xi Subscript i Baseline EndAbsoluteValue less-than delta left-parenthesis xi Subscript i Baseline right-parenthesis EndSet for all i equals 1 comma 2 comma ellipsis

      This simple modification provides an elegant characterization of the Lebesgue integral through Riemann sums (see [174]).

      Definition 1.91: We say that f colon left-bracket a comma b right-bracket right-arrow double-struck upper R is Kurzweil–McShane integrable, and we write f element-of italic upper K upper M upper S left-parenthesis left-bracket a comma b right-bracket comma double-struck upper R right-parenthesis if and only if there exists upper I element-of double-struck upper R such that for every epsilon greater-than 0, there is a gauge delta on left-bracket a comma b right-bracket such that

StartAbsoluteValue upper I minus sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts f left-parenthesis xi Subscript i Baseline right-parenthesis left-parenthesis t Subscript i Baseline minus t Subscript i minus 1 Baseline right-parenthesis EndAbsoluteValue less-than epsilon comma

      whenever d equals left-parenthesis xi Subscript i Baseline comma left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket right-parenthesis element-of upper S upper T upper D Subscript left-bracket a comma b right-bracket is delta-fine. We denote the Kurzweil–McShane integral of a function f colon left-bracket a comma b right-bracket right-arrow double-struck upper R by left-parenthesis italic upper K upper M upper S right-parenthesis integral Subscript a Superscript b Baseline f left-parenthesis t right-parenthesis d t.

      The following inclusions hold

upper R left-parenthesis left-bracket a comma b right-bracket comma double-struck upper R right-parenthesis subset-of script upper L 1 left-parenthesis left-bracket a comma b right-bracket comma double-struck upper R right-parenthesis equals italic upper K upper M upper S left-parenthesis left-bracket a comma b right-bracket comma double-struck upper R right-parenthesis subset-of upper K left-parenthesis left-bracket a comma b right-bracket comma double-struck upper R right-parenthesis equals upper H left-parenthesis left-bracket a comma b right-bracket comma double-struck upper R right-parenthesis period

      Moreover, Скачать книгу