Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Generalized Ordinary Differential Equations in Abstract Spaces and Applications - Группа авторов


Скачать книгу
semitagged division d equals left-parenthesis xi Subscript i Baseline comma left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket right-parenthesis of left-bracket a comma b right-bracket,

sigma-summation Underscript j equals 1 Overscript m Endscripts vertical-bar vertical-bar vertical-bar vertical-bar minus minus of ff tilde left-parenthesis right-parenthesis sj of ff tilde left-parenthesis right-parenthesis s minus minus j 1 less-than epsilon

      and the proof is complete.

      Lemma 1.98: Suppose . The following properties are equivalent:

      1  is absolutely integrable;

      2 .

      Proof. (i) right double arrow (ii). Suppose f is absolutely integrable. Since the variation of f overTilde, v a r Subscript a Superscript b Baseline left-parenthesis f overTilde right-parenthesis, is given by

v a r Subscript a Superscript b Baseline left-parenthesis f overTilde right-parenthesis equals sup left-brace right-brace colon sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d vertical-bar vertical-bar vertical-bar vertical-bar minus minus of ff tilde left-parenthesis right-parenthesis ti of ff tilde left-parenthesis right-parenthesis t minus minus i 1 colon equals equals d element-of element-of left-parenthesis right-parenthesis tiD left-bracket right-bracket comma a comma b

      we have

sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar minus minus of ff tilde left-parenthesis right-parenthesis ti of ff tilde left-parenthesis right-parenthesis t minus minus i 1 equals sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar integral integral t minus minus i 1 ti of ff left-parenthesis right-parenthesis t separator d separator t less-than-or-slanted-equals sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts integral Subscript t Subscript i minus 1 Baseline Superscript t Subscript i Baseline Baseline vertical-bar vertical-bar vertical-bar vertical-bar of ff left-parenthesis right-parenthesis t d t equals integral Subscript a Superscript b Baseline vertical-bar vertical-bar vertical-bar vertical-bar of ff left-parenthesis right-parenthesis t d t period StartAbsoluteValue sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar of ff left-parenthesis right-parenthesis xi i left-parenthesis t Subscript i Baseline minus t Subscript i minus 1 Baseline right-parenthesis minus v a r Subscript a Superscript b Baseline left-parenthesis f overTilde right-parenthesis EndAbsoluteValue less-than epsilon comma

      whenever d equals left-parenthesis xi Subscript i Baseline comma left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket right-parenthesis element-of upper T upper D Subscript left-bracket a comma b right-bracket is delta-fine. However,