Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов
minus t Subscript i minus 1 Baseline right-parenthesis minus v a r Subscript a Superscript b Baseline left-parenthesis f overTilde right-parenthesis EndAbsoluteValue 2nd Row 1st Column Blank 2nd Column less-than-or-slanted-equals sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts StartAbsoluteValue vertical-bar vertical-bar vertical-bar vertical-bar of ff left-parenthesis right-parenthesis xi i left-parenthesis t Subscript i Baseline minus t Subscript i minus 1 Baseline right-parenthesis minus vertical-bar vertical-bar vertical-bar vertical-bar integral integral t minus minus i 1 ti of ff left-parenthesis right-parenthesis t separator d separator t EndAbsoluteValue plus StartAbsoluteValue sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar integral integral t minus minus i 1 ti of ff left-parenthesis right-parenthesis t separator d separator t minus v a r Subscript a Superscript b Baseline left-parenthesis f overTilde right-parenthesis EndAbsoluteValue 3rd Row 1st Column Blank 2nd Column less-than-or-slanted-equals sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar minus minus times times of ff left-parenthesis right-parenthesis xi i left-parenthesis right-parenthesis minus minus tit minus minus i 1 integral integral t minus minus i 1 ti of ff left-parenthesis right-parenthesis t separator d separator t plus StartAbsoluteValue sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar minus minus of ff tilde left-parenthesis right-parenthesis ti of ff tilde left-parenthesis right-parenthesis t minus minus i 1 minus v a r Subscript a Superscript b Baseline left-parenthesis f overTilde right-parenthesis EndAbsoluteValue period EndLayout"/>
By the definition of
The next result is a consequence of the fact that
Corollary 1.99: All functions of are absolutely.integrable
The reader can find a proof of the next lemma in [35, Theorem 9].
Lemma 1.100: All functions of are.measurable
Finally, we can prove the following inclusion.
Theorem 1.101:
Proof. The result follows from the facts that all functions of
As we mentioned before, the inclusion
Proposition 1.102 (Hönig): If is an infinite dimensional Banach space, then there exists .
Proof. Let