Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Generalized Ordinary Differential Equations in Abstract Spaces and Applications - Группа авторов


Скачать книгу
minus t Subscript i minus 1 Baseline right-parenthesis minus v a r Subscript a Superscript b Baseline left-parenthesis f overTilde right-parenthesis EndAbsoluteValue 2nd Row 1st Column Blank 2nd Column less-than-or-slanted-equals sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts StartAbsoluteValue vertical-bar vertical-bar vertical-bar vertical-bar of ff left-parenthesis right-parenthesis xi i left-parenthesis t Subscript i Baseline minus t Subscript i minus 1 Baseline right-parenthesis minus vertical-bar vertical-bar vertical-bar vertical-bar integral integral t minus minus i 1 ti of ff left-parenthesis right-parenthesis t separator d separator t EndAbsoluteValue plus StartAbsoluteValue sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar integral integral t minus minus i 1 ti of ff left-parenthesis right-parenthesis t separator d separator t minus v a r Subscript a Superscript b Baseline left-parenthesis f overTilde right-parenthesis EndAbsoluteValue 3rd Row 1st Column Blank 2nd Column less-than-or-slanted-equals sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar minus minus times times of ff left-parenthesis right-parenthesis xi i left-parenthesis right-parenthesis minus minus tit minus minus i 1 integral integral t minus minus i 1 ti of ff left-parenthesis right-parenthesis t separator d separator t plus StartAbsoluteValue sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar minus minus of ff tilde left-parenthesis right-parenthesis ti of ff tilde left-parenthesis right-parenthesis t minus minus i 1 minus v a r Subscript a Superscript b Baseline left-parenthesis f overTilde right-parenthesis EndAbsoluteValue period EndLayout"/>

      The next result is a consequence of the fact that italic upper H upper M upper S left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis subset-of upper H left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis and Lemmas 1.97 and 1.98. A proof of it can be found in [132, Theorem 10.3].

      Corollary 1.99: All functions of are absolutely.integrable

      The reader can find a proof of the next lemma in [35, Theorem 9].

      Lemma 1.100: All functions of are.measurable

      Finally, we can prove the following inclusion.

      Theorem 1.101: italic upper H upper M upper S left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis subset-of script upper L 1 left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis.

      Proof. The result follows from the facts that all functions of upper H left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis and, hence, of italic upper H upper M upper S left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis are measurable (Lemma 1.100), and all functions of italic upper H upper M upper S left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis are absolutely integrable by Corollary 1.99.

      Proposition 1.102 (Hönig): If is an infinite dimensional Banach space, then there exists .

      Proof. Let dimension upper X denote the dimension of upper X. If dimension upper X equals infinity, then the Theorem of Dvoretsky–Rogers (see [60] and also [57]) implies there exists a sequence left-brace x Subscript n Baseline right-brace Subscript n element-of double-struck upper N in upper X which is summable but not absolutely summable. Thus, if we define a function f colon left-bracket <hr><noindex><a href=Скачать книгу