Antenna-in-Package Technology and Applications. Duixian Liu

Antenna-in-Package Technology and Applications - Duixian Liu


Скачать книгу
alone integrate. Nevertheless, there have been attempts to integrate an antenna (or antennas) with other circuits in a die on a wafer using the back end of the line. An antenna realized in such a way is called an antenna on a chip (AoC) and is more suitable for terahertz applications for cost and performance reasons. In addition, there have been studies to integrate an antenna (or antennas) with a radio or radar die (or dies) into a standard surface‐mounted device using a packaging process, which has created a new trend in antenna and packaging termed antenna‐in‐package (AiP). AoC and AiP are obviously subsets of the above SoC and SiP concepts, so why do we specifically differentiate them from SoC and SiP? The reason is to highlight their unique property of radiation.

      The development of mmWave AiP technology is particularly challenging because of the associated complexity in design, fabrication, integration, and testing. This book aims to face these challenges through disseminating relevant knowledge, addressing practical engineering issues, meeting immediate demands for existing systems, and providing the antenna and packaging solutions for the latest and emerging applications.

      This book contains 11 chapters. The first five chapters lay some foundation and introduce fundamental knowledge. After the introductory chapter about how AiP technology has been developed as we know it today, several types of antennas are discussed in Chapter 2. An attempt is made to summarize the basic antennas and those antennas specifically developed for AiP technology. Emphasis is given to microstrip patch antennas and arrays, grid array antennas, Yagi–Uda antennas, and magneto‐electric dipole antennas because of their dominance in AiP technology. Performance improvement techniques of antennas for AiP technology are also described. Chapter 3 describes today's mainstream packaging solutions with either wire‐bond or flip‐chip interconnects, wafer‐level package, and fan‐out wafer‐level package. Chapter 4 focuses on the electrical, mechanical, and thermal co‐design for AiP modules. More importantly, the thermal management considerations for next‐generation heterogeneous integrated systems are reviewed in order to address the growing need for cooling the high‐power devices of future radio systems. Chapter 5 presents the design and optimization of an anechoic test facility for testing mmWave integrated antennas. This facility can be used for both probe‐based and connector‐based measurements.

      The last chapter turns to 3D AiP for power transfer, sensor nodes, and Internet of Things applications. This package has a cubic geometry with radiating antennas on its surrounding faces. The chapter highlights small antenna design and miniaturizing techniques as well as multi‐mode capability as a way to achieve wideband antennas.

      This book is the result of the joint efforts of the 21 authors in eight different institutions in Asia, Europe, and the United States. A book on an emerging topic like AiP technology would not have been possible without such collaborations. We thank all authors for their creative contributions and careful preparation of manuscripts. We are also pleased to acknowledge the professional cooperation of the publishers.

      Duixian Liu IBM Thomas J. Watson Research Center Yorktown Heights, NY, USA

      Yueping Zhang School of Electrical and Electronic Engineering Nanyang Technological University Singapore

2D two‐dimensional
3D three‐dimensional
3GPP 3rd Generation Partnership Project
5G fifth‐generation
ABS acrylonitrile butadiene styrene
ACE Advanced Semiconductor Engineering, Inc.
ACP aperture‐coupled patch
ADS Advanced Design System
AIA active integrated antenna
AiM antenna in a module
AiP antenna‐in‐package
AM additive manufacturing
AMC artificial magnetic conductor
AoB antenna on a board
AoC antenna on a chip
AR axial ratio
ARM
Скачать книгу
Librs.Net