The Steam Engine Familiarly Explained and Illustrated. Dionysius Lardner

The Steam Engine Familiarly Explained and Illustrated - Dionysius Lardner


Скачать книгу
of the atmosphere, viz. 60°. Hitherto the ice or water has received a supply of heat from the surrounding air; but now an equilibrium of temperature having been established, no further supply of heat can be received; and if we would investigate the further effects of increased heat, it will be necessary to expose the liquid to fire, or some other source of heat. But previous to this, let us observe the time which the thermometer remains stationary during the liquefaction of the ice: if noted by a chronometer, it would be found to be a hundred and forty times the time during which the water in the liquid state was elevated one degree; the inference from which is, that in order to convert the solid ice into liquid water, it was necessary to receive from the surrounding atmosphere one hundred and forty times as much heat as would elevate the liquid water one degree in temperature; or, in other words, that to liquefy a given weight of ice requires as much heat as would raise the same weight of water 140° in temperature: or from 32° to 172°.

      The latent heat of water acquired in liquefaction is therefore 140°.

      (14.) Let us now suppose that, a spirit lamp being applied to the water already raised to 60°, the effects of a further supply of heat be observed: the thermometer will continue to rise until it attain the elevation of 212°, the barometer being supposed to stand at 30 inches. The thermometer having attained this elevation will cease to rise; the water will therefore cease to become hotter, and at the same time bubbles of steam will be observed to be formed at the bottom of the vessel containing the water, near the flame of the spirit lamp. These bubbles will rise through the water, and escape at the surface, exhibiting the phenomena of ebullition, and the water will undergo the process of boiling.

      During this process, the thermometer will constantly be maintained at the same elevation of 212°; but if the time be noted, it will be found that the water will be altogether evaporated, if the same source of heat be continued to be applied to it six and a half times as long as was necessary to raise it from the freezing to the boiling-point. Thus, if the application of the lamp to water at 32°, be capable of raising that water to 212° in one hour, the same lamp will require to be applied to the boiling water for six hours and a half, in order to convert the whole of it into steam. Now if the steam into which it is thus converted were carefully preserved in a receiver, maintained at the temperature of 212°, this steam would be found to have that temperature, and not a greater one; but it would be found to fill a space about 1700 times greater than the space it occupied in the liquid state, and it would possess an elastic force equal to the pressure of the atmosphere under which it was boiled; that is to say, it would press the sides of the vessel which contained it with a pressure equivalent to that of a column of mercury of 30 inches in height; or what is the same thing, at the rate of about 15lb. on every square inch of surface.

      (15.) As the quantity of heat expended in raising the water from 32° to 212°, is 180°; and as the quantity of heat necessary to convert the same water into steam is six and a half times this quantity, it follows that the quantity of heat requisite for converting a given weight of water into steam, will be found by multiplying 180° by 5–½. The product of these numbers being 990°, it follows, that, to convert a given weight of water at 212° into steam of the same temperature, under the pressure of the atmosphere, when the barometer stands at 30 inches, requires as much heat as would be necessary to raise the same water 990° higher in temperature. The heat, not being sensible to the thermometer, is latent heat; and accordingly it may be stated, that the latent heat, necessary to convert water into steam under this pressure is, in round numbers, 1000°.

      (16.) All the effects of heat which we have just described may be satisfactorily accounted for, by supposing that the principle of heat imparts to the constituent atoms of bodies a force, by virtue of which they acquire a tendency to repel each other. But in conjunction with this, it is necessary to notice another force, which is known to exist in nature: there is observable among the corpuscles of bodies a force, in virtue of which they have a tendency to cohere, and collect themselves together in solid concrete masses: this force is called the attraction of cohesion. These two forces—the natural cohesion of the particles, and the repulsive energy introduced by heat—are directly opposed to one another, and the state of the body will be decided by the predominance of the one or the other, or their mutual equilibrium. If the natural cohesion of the constituent particles of the body considerably predominate over the repulsive energy introduced by the heat, then the cohesion will take effect; the particles of the body will coalesce, the mass will become rigid and solid, and the particles will hold together in one invariable mass, so that they cannot drop asunder by the mere effect of their weight. In such cases, a more or less considerable force must be applied, in order to break the body, or to tear its parts asunder. Such is the quality which characterises the state, which in mechanics is called the state of solidity.

      If the repulsive energy introduced by the application of heat be equal, or nearly equal, to the natural cohesion with which the particles of the body are endued, then the predominance of the cohesive force may be insufficient to resist the tendency which the particles may have to drop asunder by their weight. In such a case, the constituent particles of the body cannot cohere in a solid mass, but will separate by their weight, fall asunder, and drop into the various corners, and adapt themselves to the shape of any vessel in which the body may be contained. In fact, the body will take the liquid form. In this state, however, it does not follow that the cohesive principle will be altogether inoperative: it may, and does, in some cases, exist in a perceptible degree, though insufficient to resist the separate gravitation of the particles. The tendency which particles of liquids have, in some cases, to collect in globules, plainly indicates the predominance of the cohesive principle: drops of water collected upon the window pane; drops of rain condensed in the atmosphere; the tear which trickles on the cheek; drops of mercury, which glide over any flat surface, and which it is difficult to subdivide or scatter into smaller parts; are all obvious indications of the predominance of the cohesive principle in liquids.

      By the due application of heat, even this small degree of cohesion may be conquered, and a preponderance of the opposite principle of repulsion may be created. But another physical influence here interposes its aid, and conspires with cohesion in resisting the transmission of the body from the liquid to the vaporous state: this force is no other than the pressure of the atmosphere, already explained. This pressure has an obvious tendency to restrain the particles of the liquid, to press them together, and to resist their separation. The repulsive principle of the heat introduced must therefore not only neutralize the cohesion, but must also impart to the atoms of the liquid a sufficient elasticity or repulsive energy to enable them to fly asunder, and assume the vaporous form in spite of this atmospheric resistance.

      Now it is clear, that if this atmospheric resistance be subject to any variation in its intensity, from causes whether natural or artificial, the repulsive energy necessary to be introduced by the heat, will vary proportionally: if the atmospheric pressure be diminished, then less heat will be necessary to vaporize the liquid. If, on the other hand, this pressure be increased, a greater quantity of heat will be required to impart the necessary elasticity.

      (17.) From this reasoning we must expect that any cause, whether natural or artificial, which diminishes the atmospheric pressure upon the surface of a liquid, will cause that liquid to boil at a lower temperature: and on the other hand, any cause which may increase the atmospheric pressure upon the liquid, will render it necessary to raise it to a higher temperature before it can boil.

      These inferences we accordingly find supported by experience. Under a pressure of 15lb. on the square inch, i.e. when the barometer is at 30 inches, water boils at the temperature of 212° of the common thermometer. But if water at a lower temperature, suppose 180°, be placed under the receiver of an air-pump, and, by the process of exhaustion the atmospheric pressure be removed, or very much diminished, the water will boil, although its temperature still remain at 180°, as may be indicated by a thermometer placed in it.

      On the other hand, if a thermometer be inserted air-tight in the lid of a close digester containing water with common atmospheric air above it, when the vessel is heated the air acquires an increased elasticity; and being confined by the cover, presses, with increased force, on the surface of the water. By observing the thermometer while the vessel is exposed to the action of heat, it will be seen to rise considerably above 212°, suppose to 230°, and would continue so


Скачать книгу