The Steam Engine Familiarly Explained and Illustrated. Dionysius Lardner

The Steam Engine Familiarly Explained and Illustrated - Dionysius Lardner


Скачать книгу
resist the pressure within it.

      The temperature at which water boils is commonly said to be 212°, which is called the boiling-point of the thermometer; but, strictly speaking, this is only true when the barometer stands at 30 inches. If it be lower, water will boil at a lower temperature, because the atmospheric pressure is less; and if it be higher, as at 31, water will not boil until it receives a higher temperature, the pressure being greater.

      According as the cohesive forces of the particles of liquids are more or less active, they boil at greater or less temperatures. In general the lighter liquids, such as alcohol and ether, boil at lower temperatures. These fluids, in fact, would boil by merely removing the atmospheric pressure, as may be proved by placing them under the receiver of an air-pump, and withdrawing the air. From this we may conclude that these and similar substances would never exist in the liquid state at all, but for the atmospheric pressure.

      (18.) The elasticity of vapour raised from a boiling liquid, is equal to the pressure under which it is produced. Thus, steam raised from water at 212°, and, therefore, under a pressure of 15lb. on the square inch, is endued with an elastic force which would exert a pressure on the sides of any vessel which confines it, also equal to 15lb. on the square inch. Since an increased pressure infers an increased temperature in boiling, it follows, that where steam of a higher pressure than the atmosphere is required, it is necessary that the water should be boiled at a higher temperature.

      (19.) We have already stated that there is a certain point at which the temperature of a liquid will cease to rise, and that all the heat communicated to it beyond this is consumed in the formation of vapour. It has been ascertained, that when water boils at 212°, under a pressure equal to 30 inches of mercury, a cubic inch of water forms a cubic foot[4] of steam, the elastic force of which is equal to the atmospheric pressure, and the temperature of which is 212°. Since there are 1728 cubic inches in a cubic foot, it follows, that when water at this temperature passes from the liquid to the vaporous state, it is dilated into 1728 times its bulk.

      (20.) We have seen that about 1000 degrees of heat must be communicated to any given quantity of water at 212°, in order to convert it into steam of the same temperature, and possessing a pressure amounting to about 15 pounds on the square inch, and that such steam will occupy above 1700 times the bulk of the water from which it was raised. Now we might anticipate, that by abstracting the heat thus employed in converting the liquid into vapour, a series of changes would be produced exactly the reverse of those already described; and such is found to be actually the case. Let us suppose a vessel, the capacity of which is 1728 cubic inches, to be filled with steam, of the temperature of 212°, and exerting a pressure of 15 pounds on the square inch; let 5–½ cubic inches of water, at the temperature of 32°, be injected into this vessel, immediately the steam will impart the heat, which it has absorbed in the process of vaporisation to the water thus injected, and will itself resume the liquid form. It will shrink into its primitive dimensions of one cubic inch, and the heat which it will dismiss will be sufficient to raise the 5–½ cubic inches of injected water to the temperature of 212°. The contents of the vessel will thus be 6–½ cubic inches of water at the temperature of 212°. One of these cubic inches is in fact the steam which previously filled the vessel reconverted into water, the other 5–½ are the injected water which has been raised from the temperature of 32° to 212° by the heat which has been dismissed by the steam in resuming the liquid state. It will be observed that in this transmission no temperature is lost, since the cubic inch of water into which the steam is converted has the same temperature as the steam had before the cold water was injected.

      These consequences are in perfect accordance with the results already obtained from observing the time necessary to convert a given quantity of water into steam by the application of heat. From the present result it follows, that in the reduction of a given quantity of steam to water it parts with as much heat as is sufficient to raise 5–½ cubic inches from 32° to 212°, that is, 5–½ times 180° or 990°.

      (21.) There is an effect produced in this process to which it is material that we should attend. The steam which filled the space of 1728 cubic inches shrinks when reconverted into water into the dimensions of 1 cubic inch. It therefore leaves 1727 cubic inches of the vessel it contains unoccupied. By this property steam is rendered instrumental in the formation of a vacuum.

      By allowing steam to circulate through a vessel, the air may be expelled from it, and its place filled by steam. If the vessel be then closed and cooled the steam will be reduced to water, and, falling in drops on the bottom and sides of the vessel, the space which it filled will become a vacuum. This may be easily established by experiment. Let a long glass tube be provided with a hollow ball at one end, and having the other end open.[5] Let a small quantity of spirits be poured in at the open end, and placing the glass ball over the flame of a lamp, let the spirits be boiled. After some time the steam will be observed to issue copiously from the open end of the tube which is presented upwards. When this takes place, let the tube be inverted, and its open end plunged in a basin of cold water. The heat being thus removed, the cool air will reconvert the steam in the tube into liquid, and a vacuum will be produced, into which the pressure of the atmosphere on the surface of the water in the basin will force the water through the tube, and it will rush up with considerable force, and fill the glass ball.

      In this experiment it is better to use spirits than water, because they boil at a lower heat, and expose the glass to less liability to break, and also the tube may more easily be handled.

      CHAPTER II.

       FIRST STEPS IN THE INVENTION.

       Table of Contents

      Futility of early claims. — Watt, the real Inventor. — Hero of Alexandria. — Blasco Garay. — Solomon de Caus. — Giovanni Branca. — Marquis of Worcester. — Sir Samuel Morland. — Denis Papin. — Thomas Savery.

      (22.) In the history of the progress of the useful arts and manufactures, there is perhaps no example of any invention the credit of which has been so keenly contested as that of the steam engine. Claims to it have been advanced by different nations, and by different individuals of the same nation. The partisans of the competitors for this honour have argued their pretensions, and pressed their claims, with a zeal which has occasionally outstripped the bounds of discretion; and the contest has not unfrequently been tinged with prejudices, both national and personal, and marked with a degree of asperity quite unworthy of so noble a cause, and altogether beneath the dignity of science.

      The efficacy of the steam engine considered as a mechanical agent depends, first, on the several physical properties from which it derives its operation, and, secondly, on the various pieces of mechanism and details of mechanical arrangement by which these properties are rendered practically available. If the merit of the invention must be ascribed to the discoverer and contriver of these, then the contest will be easily decided, because it will be obvious that the prize is not due to any one individual, but must be distributed in different proportions among several. If, however, he is best entitled to the credit of the invention, who has by the powers of his mechanical genius imparted to the machine that form and those qualities from which it has received its present extensive utility, and by which it has become an agent of transcendent power, which has spread its beneficial effects throughout every part of the civilized globe, then the universal consent of mankind will, as it were by acclamation, award the prize to one individual, whose pre-eminent genius places him far above all other competitors, and from the application of whose mental energies to this machine may be dated those grand effects which have rendered it a topic of interest to every individual for whom the progress of human civilization has any attractions. Before the era marked by the discoveries of James Watt, the steam engine, which has since become an object of such universal interest, was a machine of extremely limited power, greatly inferior in importance to most other mechanical contrivances used as prime movers. But from that time it is scarcely necessary here to state that it became a subject not of British interest only, but one with which the progress of the human race became intimately mixed up.

      Since, however,


Скачать книгу