Spectroscopy for Materials Characterization. Группа авторов
Larsen, D.S., and van Grondelle, R. (2004). Global and target analysis of time‐resolved spectra. Biochim. Biophys. Acta 1657: 82–104.
40 40 Marciniak, H. and Lochbrunner, S. (2014). On the interpretation of decay associated spectra in the presence of time dependent spectral shifts. Chem. Phys. Lett. 609: 184–188.
41 41 Gerecke, M., Bierhance, G., Gutmann, M. et al. (2016). Femtosecond broadband fluorescence upconversion spectroscopy: spectral coverage versus efficiency. Rev. Sci. Instrum. 87 (5): 053115.
42 42 Messina, F., Bräm, O., Cannizzo, A., and Chergui, M. (2013). Real‐time observation of the charge transfer to solvent dynamics. Nat. Comm. 4: 2119.
43 43 Underwood, D.F., Kippeny, T., and Rosenthal, S.J. (2001). Ultrafast carrier dynamics in cdse nanocrystals determined by femtosecond fluorescence upconversion spectroscopy. J. Phys. Chem. B 105: 436–443.
44 44 Zhang, L., Wang, L., Kao, Y.‐T. et al. (2007). Mapping hydration dynamics around a protein surface. Proc. Natl. Acad. Sci. 104: 18461–18466.
45 45 Chosrowjan, H. (2017). Fluorescence up‐conversion methods and applications. In: Encyclopedia of Spectroscopy and Spectrometry, 3ee (eds. J.C. Lindon, G.E. Tranter and D.W. Koppenaal), 654–660. Oxford: Academic Press.
46 46 Lakowicz, J.R. (2006). Principles of Fluorescence Spectroscopy, 3ee. Springer.
47 47 Xu, J. and Knutson, J.R. (2008). Ultrafast fluorescence spectroscopy via upconversion: applications to biophysics. Meth. Enzymol. 450: 159–183.
48 48 Righini, R. (1993). Ultrafast optical kerr effect in liquids and solids. Science 262: 1386–1390.
49 49 Schmidt, B., Laimgruber, S., Zinth, W., and Gilch, P. (2003). A broadband kerr shutter for femtosecond fluorescence spectroscopy. Appl. Phys B 76: 809–814.
50 50 Kukura, P., McCamant, D.W., Yoon, S. et al. (2005). Structural observation of the primary isomerization in vision with femtosecond‐stimulated raman. Science 310: 1006–1009.
51 51 Kukura, P., McCamant, D.W., and Mathies, R.A. (2007). Femtosecond stimulated raman spectroscopy. Annu. Rev. Phys. Chem. 58: 461–488.
52 52 Dietze, D.R. and Mathies, R.A. (2016). Femtosecond stimulated Raman spectroscopy. Chem. Phys. Chem. 17: 1224–1251.
53 53 Kuramochi, H., Takeuchi, S., and Tahara, T. (2012). Ultrafast structural evolution of photoactive yellow protein chromophore revealed by ultraviolet resonance femtosecond stimulated Raman spectroscopy. J. Phys. Chem. Lett. 3: 2025–2029.
54 54 Reid, P.J., Wickham, S.D., and Mathies, R.A. (1992). Picosecond UV resonance Raman spectroscopy of the photochemical hydrogen migration in 1,3,5‐cycloheptatriene. J. Phys. Chem. 96: 5720–5724.
55 55 Yoshizawa, M. and Kurosawa, M. (1999). Femtosecond time‐resolved raman spectroscopy using stimulated Raman scattering. Phys. Rev. A 61: 013808.
56 56 Adamczyk, K., Prémont‐Schwarz, M., Pines, D. et al. (2009). Real‐time observation of carbonic acid formation in aqueous solution. Science 326: 1690–1694.
57 57 Schreier, W.J., Schrade, T.E., Koller, F.O. et al. (2007). Thymine dimerization in DNA is an ultrafast photoreaction. Science 315: 625–629.
58 58 Kuramochi, H., Takeuchi, S., and Tahara, T. (2016). Femtosecond time‐resolved impulsive stimulated raman spectroscopy using sub‐7‐fs pulses: apparatus and applications. Rev. Sci. Instrum. 87: 043107.
59 59 Rondonuwu, F.S., Watanabe, Y., Zhang, J.‐P. et al. (2002). Internal‐conversion and radiative‐transition processes among the and states of all‐trans‐neurosporene as revealed by subpicosecond time‐resolved Raman spectroscopy. Chem. Phys. Lett. 357: 376–384.
60 60 McCamant, D.W., Kukura, P., and Mathies, R.A. (2003). Femtosecond time‐resolved stimulated raman spectroscopy: application to the ultrafast internal conversion in β‐carotene. J. Phys. Chem. A 107: 8208–8214.
61 61 McCamant, D.W., Kukura, P., Yoon, S., and Mathies, R.A. (2004). Femtosecond broadband stimulated raman spectroscopy: apparatus and methods. Rev. Sci. Instrum. 75: 4971–4980.
62 62 Dobryakov, A.L., Quick, M., Ioffe, I.N. et al. (2014). Excited‐state raman spectroscopy with and without actinic excitation: S 1 Raman spectra of trans‐azobenzene. J. Chem. Phys. 140: 184310.
63 63 Kim, H.M., Kim, H., Yang, I. et al. (2014). Time‐gated pre‐resonant femtosecond stimulated Raman spectroscopy of diethylthiatricarbocyanine iodide. Phys. Chem. Chem. Phys. 16: 5312–5318.
64 64 Laimgruber, S., Schachenmayr, H., Schmidt, B. et al. (2006). A femtosecond stimulated raman spectrograph for the near ultraviolet. Appl. Phys. B 85: 557–564.
65 65 Rhinehart, J.M., Challa, R., and McCamant, D. (2012). Multimode charge‐transfer dynamics of 4‐(dimethylamino)benzonitrile probed with ultraviolet femtosecond stimulated raman spectroscopy. J. Phys. Chem. B 116: 10522–10534.
66 66 Kardas, T.M., Ratajska‐Gadomska, B., Lapini, A. et al. (2014). Dynamics of the time‐resolved stimulated raman scattering spectrum in presence of transient vibronic inversion of population on the example of optically excited trans‐β‐apo‐8′‐carotenal. J. Chem. Phys. 140: 204312.
67 67 Fang, C., Frontiera, R.R., Tran, R., and Mathies, R.A. (2009). Mapping gfp structure evolution during proton transfer with femtosecond raman spectroscopy. Nature 462: 200–205.
68 68 Damraurer, N.H., Cerullo, G., Yeh, t.R. et al. (1997). Femtosecond dynamics of excited‐state evolution in [Ru(bpy)3]2+. Science 275: 54.
69 69 Bräm, O., Messina, F., El‐Zohry, A.M. et al. (2012). Polychromatic femtosecond fluorescence studies of metal–polypyridine complexes in solution. Chem. Phys. 393: 51–57.
70 70 Sciortino, A., Marino, E., van Dam, B. et al. (2016). Solvatochromism unravels the emission mechanism of carbon nanodots. J. Phys. Chem. Lett. 7 (17): 3419–3423.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.