Теоретические основы инвестиций в акции, облигации и стандартные опционы. Владимир Костин
численные методы, что обусловлено чрезмерно громоздкими конечными формулами, которые выводятся в рамках аналитической геометрии. Численные методы предполагают определение достижимого множества портфеля, например, путём последовательного перебора всех возможных сочетаний объёмов инвестирования в каждый актив при этом большое количество арифметических операций предопределяет необходимость использования вычислительной техники.
Методологически оправданным (от простого к сложному) является анализ специфики достижимых множеств портфелей как комбинации:
безрискового актива с рискованным активом;
двух рискованных активов;
трёх рискованных активов;
рискованных активов;
безрискового актива и рискованных активов;
рискованных активов и активов с фиксированной доходностью.
При анализе инвестиционных качеств перечисленных вариантов комбинаций активов будем полагать, что возможности инвестора ограничены собственным капиталом.
Достижимое множество портфелей, содержащих безрисковый актив и рискованный актив. На основании приведенных выше соотношений рассмотрим основные свойства портфеля, который состоит из безрискового актива и рискованного актива
где и – относительные объёмы инвестирования в безрисковый и рискованный активы соответственно; и – доходность и СКО доходности безрискового актива соответственно; и – МО и СКО доходности рискованного актива соответственно; – коэффициент корреляции доходностей безрискового и рискованного активов.
Поскольку в данном случае , СКО доходности безрискового актива равно нулю () по определению, а случайная и детерминированная величины всегда не коррелированны () получаем
После простых преобразований находим
Анализ соотношения (1.14) показывает, что зависимость МО доходности портфеля от СКО доходности является линейной (рис.1.2). Параметр является свободным членом в данной линейной зависимости, а отношение является тангенсом угла наклона прямой.
Рис. 1.2. Достижимое множество портфелей, содержащих безрисковый и рискованный активы
Условия и ограничивают прямую линию отрезком прямой, который пересекает ось ординат в точке, соответствующей портфелю (, , , ), и завершается точкой, соответствующей портфелю (, , , ).
Таким образом, достижимое множество портфелей, содержащих безрисковый и рискованный активы, имеет вид отрезка прямой линии, соединяющей точки и , соответствующие безрисковому активу и рискованному активу. При этом конкретное расположение портфеля на отрезке прямой зависит от соотношения относительных объёмов инвестирования в безрисковый и рискованный активы.
Достижимое множество портфелей, содержащих два рискованных актива. Предположим, что портфель содержит два рискованных актива и . По аналогии с соотношениями (1.10) и (1.11) получаем
где