Теоретические основы инвестиций в акции, облигации и стандартные опционы. Владимир Костин

Теоретические основы инвестиций в акции, облигации и стандартные опционы - Владимир Костин


Скачать книгу
оказывается сколь угодно близка к нормальной вне зависимости от того, каковы были плотности распределения слагаемых [2]. При композиции двух или более случайных величин с нормальными плотностями распределения результирующая случайная величина всегда имеет нормальную плотность распределения [2]. Причём МО и дисперсия (квадрат СКО) результирующей случайной величины рассчитываются как суммы МО и дисперсий (квадратов СКО) слагаемых случайных величин. Следовательно, текущие стоимость и доходность портфеля активов можно полагать нормально распределёнными.

      Необходимость формирования портфеля активов обусловлена двумя причинами.

      Во–первых, всегда существует риск дефолта (неплатежа) эмитентов ценных бумаг. Очевидно, портфель, содержащий сравнительно небольшое количество активов (например, одну ценную бумагу), обладает катастрофическим риском. Это означает, что в случае дефолта одного из эмитентов инвестор понесёт недопустимо большие потери, сравнимые со стоимостью всего портфеля.

      В литературе встречается термин «хорошо диверсифицированный портфель» – портфель, в котором предельно сокращён максимальный объём инвестиций в один рискованный актив. Подразумевается, что владелец такого портфеля в случае наступления негативного события психологически готов к относительно небольшим и прогнозируемым потерям. Считается, что хорошо диверсифицированный портфель должен содержать не менее 20 видов активов. При таком количестве видов активов в портфеле в случае дефолта одного из эмитентов инвестор не теряет шансы на получение дохода.

      Во–вторых, диверсификация инвестиций приводит к уменьшению СКО стоимости и доходности портфеля и, как следствие, к снижению риска отрицательной доходности портфеля. Согласно портфельной теории Г.Марковица инвестор стремится оптимизировать структуру портфеля таким образом, чтобы МО доходности было максимальным, а СКО доходности – минимальным. Такой портфель должен содержать около 30–40 видов ценных бумаг компаний, действующих в различных отраслях [5, 6].

      Определим МО и СКО доходности портфеля активов, используя при этом известные положения теории вероятностей – теоремы о числовых характеристиках функций случайных величин [2].

      Математическое ожидание доходности портфеля активов. В соответствии с соотношением (1.3) для оценки МО доходности портфеля, содержащего видов активов, необходимо определить цену покупки портфеля, МО капитального дохода и дивидендный доход портфеля.

      При наличии в портфеле нескольких видов активов цена покупки портфеля составляет

      где – количество активов iго вида (эмитента) в портфеле; – цена покупки одного актива iго вида; – объём инвестирования в актив iго вида.

      Если МО капитального дохода актива iго вида равно , то МО капитального дохода совокупности активов одного вида составляет .

      Математическое ожидание капитального дохода портфеля, который


Скачать книгу