El universo en tu mano. Christophe Galfard

El universo en tu mano - Christophe Galfard


Скачать книгу
en el firmamento. No te preocupes: tu tía abuela está perfectamente, recibirás unos cuantos jarrones más y aún tendrás unas cuantas oportunidades más de convencerla de que se deje de postales y utilice el correo electrónico. Esa sería una opción más rápida, pero no sería instantánea. Nada es instantáneo. Con el correo electrónico, recibirías su foto algunas décimas de segundo después de que la enviase, con lo que una vez más existe la posibilidad de que haya muerto antes de que la recibas.

      Con esto no pretendo sumirte en la paranoia ni hacerte creer que todas las personas que conoces han muerto. Intento más bien explicar lo que sucede en el espacio, donde el servicio de mensajería más rápido que existe utiliza la luz como instrumento de comunicación. Y esta, pese a ser muy rápida, está muy lejos de moverse instantáneamente. En el espacio exterior alcanza la inigualada, inigualable y vertiginosa velocidad de 299.792,458 kilómetros por segundo. La luz podría dar 26 veces la vuelta a la Tierra en el tiempo que te ha llevado leer esta frase. Es muy rápida, lo más rápido que existe, pero asombrosamente lenta si se consideran las distancias intergalácticas que estamos manejando.

      Cuando una estrella brilla, su luz transporta una imagen de sí misma. Esta última avanza por el espacio a la velocidad de la luz y puede tardar mucho tiempo hasta que llega a nosotros. Eso significa que, efectivamente, es probable que las estrellas más distantes de nuestro firmamento se hayan extinguido ya. Pero no es el caso de todas ellas. El Sol, por ejemplo, todavía existe. Para ser más precisos, no sabemos qué tal le va ahora mismo pero hace ocho minutos y veinte segundos no se había extinguido.

      Como vimos en la primera parte, la luz del Sol tarda unos ocho minutos y veinte segundos en recorrer los 150 millones de kilómetros que nos separan de él. Esto significa que si el Sol dejase de brillar en este preciso instante, tendríamos noticia de ese (considerable) problema en ocho minutos y veinte segundos. Significa también que desde la Tierra siempre veremos el Sol tal y como era hace ocho minutos y veinte segundos, y no como es ahora mismo. El Sol que reluce en lo alto de un día soleado nunca es tal y como lo ves cuando lo ves. Ni siquiera está donde lo ves. Durante los ocho minutos y veinte segundos que tarda en llegar a bañar tu piel, el Sol habrá recorrido aproximadamente 117.300 kilómetros en su órbita alrededor del centro de nuestra galaxia.

      La luz más distante que hemos sido capaces de detectar en nuestro universo ha tardado 13.800 millones de años en llegar a nuestros telescopios, directamente desde el instante en que nuestro universo se hizo transparente.

      Las enormes estrellas que empezaron a brillar unos pocos centenares de millones de años después de aquel momento han dejado de existir con casi total seguridad, pese a que su luz nos llega ahora y las hace visibles a nuestros ojos.

      Puede decirse lo mismo de muchas otras estrellas situadas entre el Sol y los confines más lejanos de nuestro universo.

      El 24 de enero de 2014, por ejemplo, los astrónomos vieron cómo una estrella explotaba en el firmamento nocturno en una galaxia muy, muy lejana. Lo vieron en directo, a medida que la luz de la explosión llegaba hasta sus telescopios. Por lo que a nosotros respecta, la estrella se apagó el 24 de enero de 2014. Pero alguien que viviese junto a ella habría presenciado la explosión tal y como se produjo in situ... hace 12 millones de años.

      *

      Nadie puede viajar al otro lado del universo. Nadie puede teletransportarse hasta allá de manera instantánea. Bien mirado, explorar el cielo nocturno es como recibir postales individuales desde todos los puntos del firmamento, selladas en distintos lugares y momentos de la historia de nuestro universo, en función de cuándo y cómo emprendieron su viaje. Solo cuando combinamos el conjunto de esas postales desde las márgenes mismas del tiempo podemos reconstruir un mero fragmento del universo al que pertenecemos tal y como lo vemos desde la Tierra.

      En la primera parte del libro viajamos a través de ese fragmento.

      Hasta septiembre de 2015, si queríamos obtener información sobre el espacio exterior, la tecnología de que disponíamos no ofrecía muchas alternativas: había que usar la luz, sí o sí. No había otra forma de asomarse a los confines del cosmos. Eso ha cambiado, sin embargo. Ahora contamos con una herramienta capaz de detectar señales que hasta ahora nos habían sido esquivas. Una señal que se vale de la luz para viajar. El 11 de febrero de 2016 saltaba la noticia: se habían detectado, medido y analizado ondas en el tejido mismo que compone el universo. Se trataba de ondas no compuestas de luz. Como verás en breve, estaban compuestas de espacio y tiempo, que las ondas estiraban y comprimían a medida que fluían a través de todo a la velocidad de la luz. Los nuevos y especiales detectores de ondas han abierto una ventana a través de la que podemos explorar nuestra realidad: ahora estamos en condiciones de percibir cosas que no podemos ver mediante la luz. Y si te estás preguntando de qué se trata... No irías desencaminado si piensas en agujeros negros y el Big Bang.

      Es cierto que todavía no sabemos qué percibirá este nuevo ojo. Por eso, antes de ponerte a aprender más sobre esas ondas y el desorbitado poder de sus fuentes, veamos qué es lo que hemos podido comprender capturando las luces que llegan hasta nosotros desde el espacio exterior.

       5

       Expansión

      Repito: a día de hoy, todo lo que sabemos del universo remoto proviene de la luz que llega hasta nosotros.

      Para descifrarla y entenderla tenemos que descubrir exactamente qué información transporta la luz y cómo interactúa con la materia y los componentes de esta (los átomos) que encuentra a su paso en el espacio.

      En capítulos posteriores de este libro te sumergirás directamente en el corazón de los átomos, pero de momento no necesitas saber nada sobre ellos. Dejémoslo en que los átomos pueden describirse como núcleos redondos rodeados por electrones rotatorios, y que estos últimos no están desperdigados al azar, sino organizados en capas alrededor del núcleo.

      Resulta tentador imaginarlos como planetas que giran en torno a una estrella central, pero eso llevaría a confusión: de hecho, a las trayectorias de los electrones alrededor del núcleo del átomo las llamamos orbitales para distinguirlas expresamente de las órbitas planetarias.

      A la velocidad adecuada, en teoría, un planeta puede orbitar alrededor de su estrella a la distancia que le plazca, pero ese no es el caso de los electrones. A diferencia de las órbitas planetarias, los orbitales electrónicos están separados por zonas de exclusión, espacios en los cuales los electrones simplemente no pueden estar. Además, los electrones pueden saltar con facilidad —en ocasiones, incluso espontáneamente— por encima de esas zonas prohibidas, de un orbital a otro.

      Sin embargo, y esto es lo que nos interesa, esos saltos no se producen gratuitamente.

      Para pasar de un orbital a otro, los electrones tienen que absorber o emitir algo de energía.

      Y puesto que cuanto más alejado está un electrón de su núcleo, mayor es la energía que transporta, para que un electrón salte de un orbital a otro más alejado tiene que ganar algo de energía, un poco como la llamarada con la que un globo aerostático gana algo de altitud.

      Inversamente, para acercarse al núcleo el electrón tiene que emitir algo a fin de deshacerse de parte de su energía, como cuando un globo suelta aire caliente para dejarse caer hacia la Tierra.

      ¿De dónde sale esa energía?

      Precisamente ahí es donde entra en juego la luz: los electrones pueden saltar de un orbital a otro absorbiendo o emitiendo algo de luz. Pero no cualquier clase de luz.

      Para pasar de un orbital a otro, los electrones tienen que saltar por encima de las zonas de exclusión electrónica que los separan y, para lograrlo, deben absorber o emitir una cantidad específica de energía que se corresponde con un rayo de luz específico. Si la luz que reciben no contiene la energía suficiente, los electrones no podrán dar el salto y permanecerán donde están. Del mismo modo, si los alcanza un rayo de luz excesivamente cargado de energía, podrían


Скачать книгу