Padaczka. Etiologia. Отсутствует
absence epilepsy and febrile seizures. Nat Genet 2001; 28(1): 49–52.
28. Harkin L.A., Bowser D.N., Dibbens L.M. i wsp.: Truncation of the GABA(A)–receptor gamma2 subunit in a family with generalized epilepsy with febrile seizures plus. Am J Hum Genet 2002; 70(2): 530–536.
29. Cossette P., Liu L., Brisebois K. i wsp.: Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nat Genet 2002; 31(2): 184–189.
30. Maljevic S., Krampfl K., Cobilanschi J. i wsp.: A mutation in the GABA(A) receptor alpha(1)-subunit is associated with absence epilepsy. Ann Neurol 2006; 59(6): 983–987.
31. Lemke J.R., Lal D., Reithaler E.M. i wsp.: Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes. Nat Genet 2013; 45(9): 1067–1072.
32. Lemke J.R., Geider K., Helbig K.L. i wsp.: Delineating the GRIN1 phenotypic spectrum: A distinct genetic NMDA receptor encephalopathy. Neurology 2016; 86(23): 2171–2178.
33. Li D., Yuan H., Ortiz-Gonzalez X.R. i wsp.: GRIN2D Recurrent De Novo Dominant Mutation Causes a Severe Epileptic Encephalopathy Treatable with NMDA Receptor Channel Blockers. Am J Hum Genet 2016; 99(4): 802–816.
34. Smigiel R., Kostrzewa G., Kosinska J. i wsp.: Further evidence for GRIN2B mutation as the cause of severe epileptic encephalopathy. Am J Med Genet A 2016; 170(12): 3265–3270.
35. Hamdan F.F., Srour M., Capo-Chichi J.M. i wsp.: De novo mutations in moderate or severe intellectual disability. PLoS Genet 2014; 10(10): e1004772.
36. Carvill G.L., Heavin S.B., Yendle S.C. i wsp.: Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat Genet 2013; 45(7): 825–830.
37. Suls A., Jaehn J.A., Kecskés A. i wsp.: De novo loss-of-function mutations in CHD2 cause a fever-sensitive myoclonic epileptic encephalopathy sharing features with Dravet syndrome. Am J Hum Genet 2013; 93(5): 967–975.
38. O’Roak B.J., Stessman H.A., Boyle E.A. i wsp.: Recurrent de novo mutations implicate novel genes underlying simplex autism risk. Nat Commun 2014; 5: 5595.
39. Galizia E.C., Myers C.T., Leu C. i wsp.: CHD2 variants are a risk factor for photosensitivity in epilepsy. Brain 2015; 138(Pt 5): 1198–1207.
40. Thomas R.H., Zhang L.M., Carvill G.L. i wsp.: CHD2 myoclonic encephalopathy is frequently associated with self-induced seizures. Neurology 2015; 84(9): 951–958.
41. Myers C.T., Mefford H.C.: Genetic investigations of the epileptic encephalopathies: Recent advances. Prog Brain Res 2016; 226: 35–60.
42. Paciorkowski A.R., Traylor R.N., Rosenfeld J.A. i wsp.: MEF2C Haploinsufficiency features consistent hyperkinesis, variable epilepsy, and has a role in dorsal and ventral neuronal developmental pathways. Neurogenetics 2013; 14(2): 99–111.
43. Lambert L., Bienvenu T., Allou L. i wsp.: MEF2C mutations are a rare cause of Rett or severe Rett-like encephalopathies. Clin Genet 2012; 82(5): 499–501.
44. Nakajima J., Okamoto N., Tohyama J. i wsp.: De novo EEF1A2 mutations in patients with characteristic facial features, intellectual disability, autistic behaviors and epilepsy. Clin Genet 2015; 87(4): 356–361.
45. Veeramah K.R., Johnstone L., Karafet T.M. i wsp.: Exome sequencing reveals new causal mutations in children with epileptic encephalopathies. Epilepsia 2013; 54(7): 1270–1281.
46. Dibbens L.M., de Vries B., Donatello S. i wsp.: Mutations in DEPDC5 cause familial focal epilepsy with variable foci. Nat Genet 2013; 45(5): 546–551.
47. Ishida S., Picard F., Rudolf G. i wsp.: Mutations of DEPDC5 cause autosomal dominant focal epilepsies. Nat Genet 2013; 45(5): 552–555.
48. Baulac S., Ishida S., Marsan E. i wsp.: Familial focal epilepsy with focal cortical dysplasia due to DEPDC5 mutations. Ann Neurol 2015; 77(4): 675–683.
49. D’Gama A.M., Pochareddy S., Li M. i wsp.: Targeted DNA Sequencing from Autism Spectrum Disorder Brains Implicates Multiple Genetic Mechanisms. Neuron 2015; 88(5): 910–917.
50. Scheffer I.E., Heron S.E., Regan B.M. i wsp.: Mutations in mammalian target of rapamycin regulator DEPDC5 cause focal epilepsy with brain malformations. Ann Neurol 2014; 75(5): 782–787.
51. Korenke G.C., Eggert M., Thiele H. i wsp.: Nocturnal frontal lobe epilepsy caused by a mutation in the GATOR1 complex gene NPRL3. Epilepsia 2016; 57(3): e60–63.
52. Ricos M.G., Hodgson B.L., Pippucci T. i wsp.: Mutations in the mammalian target of rapamycin pathway regulators NPRL2 and NPRL3 cause focal epilepsy. Ann Neurol 2016; 79(1): 120–131.
53. De Vivo D.C., Trifiletti R.R., Jacobson R.I. i wsp.: Defective glucose transport across the blood-brain barrier as a cause of persistent hypoglycorrhachia, seizures, and developmental delay. N Engl J Med 1991; 325(10): 703–709.
54. Dibbens L.M., Tarpey P.S., Hynes K. i wsp.: X-linked protocadherin 19 mutations cause female-limited epilepsy and cognitive impairment. Nat Genet 2008; 40(6): 776–781.
55. Duszyc K., Terczynska I., Hoffman-Zacharska D.: Epilepsy and mental retardation restricted to females: X-linked epileptic infantile encephalopathy of unusual inheritance. J Appl Genet 2015; 56(1): 49–56.
56. Kilstrup-Nielsen C., Rusconi L., La Montanara P. i wsp.: What we know and would like to know about CDKL5 and its involvement in epileptic encephalopathy. Neural Plast 2012; 2012: 728267.
57. Saitsu H., Kato M., Mizuguchi T. i wsp.: De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic encephalopathy. Nat Genet 2008; 40(6): 782–788.
58. Schubert J., Siekierska A., Langlois M. i wsp.: Mutations in STX1B, encoding a presynaptic protein, cause fever-associated epilepsy syndromes. Nat Genet 2014; 46(12): 1327–1332.
59. Mignot C., von Stülpnagel C., Nava C. i wsp.: Genetic and neurodevelopmental spectrum of SYNGAP1-associated intellectual disability and epilepsy. J Med Genet 2016; 53(8): 511–522.
60. Hani A.J., Mikati H.M., Mikati M.A.: Genetics of pediatric epilepsy. Pediatr Clin North Am 2015; 62(3): 703–722.
61. Poduri A.: DEPDC5 does it all: shared genetics for diverse epilepsy syndromes. Ann Neurol 2014; 75(5): 631–633.
62. Hallmann K., Zsurka G., Moskau-Hartmann S. i wsp.: A homozygous splice-site mutation in CARS2 is associated with progressive myoclonic epilepsy. Neurology 2014; 83(23): 2183–2187.
63. Italiano D., Striano P., Russo E. i wsp.: Genetics of reflex seizures and epilepsies in humans and animals. Epilepsy Res 2016; 121: 47–54.
64. El Achkar C.M., Olson H.E., Poduri A., Pearl P.L.: The genetics of the epilepsies. Curr Neurol Neurosci Rep 2015; 15(7): 39.
65. Muona M., Berkovic S.F., Dibbens L.M. i wsp.: A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy. Nat Genet 2015; 47(1): 39–46.
66. Steinborn B., Mazurkiewicz-Beldzinska M., Winczewska-Wiktor A.: Genetyka padaczek. W: Neurologia wieku rozwojowego, red. nauk. B. Steinborn. PZWL Wydawnictwo Lekarskie, Warszawa 2017, 340–362.
67. Latos-Bielenska A., Badura-Stronka M., Piechota M.: Metody badań genetycznych i poradnictwo genetyczne w neurologii. W: Neurologia wieku rozwojowego, red. nauk. B. Steinborn. PZWL Wydawnictwo Lekarskie, Warszawa 2017, 272–291.
68. Wilmshurst J.M., Gaillard W.D., Vinayan K.P. i wsp.: Summary of recommendations for the management of infantile seizures: Task Force Report for the ILAE Commission of Pediatrics. Epilepsia 2015; 56(8): 1185–1197.
69. Ream M.A. Patel A.D.: Obtaining genetic testing